
A Model Predictive Control Implementation of Guidance for
Fuel Optimal Large Diverts (G-FOLD)

Govind Chari∗
Cornell University, Ithaca, NY, 14853

In this paper I will present my recreation of JPL’s G-FOLD algorithm for six-degree-of-
freedom (6DOF) fuel-optimal powered descent and its implementation as a model predictive
controller. At the end of the paper, I will present trajectories generated by the controller as
well as modifications I made to the algorithm to make it more robust to disturbances. This
paper is written as the final report for ECE5555 Stochastic Systems: Estimation and Control.

I. Nomenclature

r = position vector (<)
q = orientation quaternion
v = velocity vector (</B)
8 = angular velocity vector (A03/B)
e8 = 8Cℎ column of the identity matrix
60 = gravitational acceleration in earth at sea level (</B2)
g = gravitational acceleration vector (</B2)
<3A H = dry mass of vehicle (:6)
<F4C = initial mass of vehicle (:6)
' = vehicle radius (<)
; = vehicle length (<)
I = natural log of mass
I = inertia tensor (:6 · <2)
�B? = specific impulse (B)
d1 = lower throttle bound (#)
d2 = upper throttle bound (#)
U = mass depletion parameter
W = glideslope (A03B)
\<0G = pointing constraint
Z = thrust vector
Z34B = desired thrust vector
u = acceleration induced by thrusters
S = moment vector
S34B = desired moment vector
Γ = slack variable
f = mass normalized slack variable
ΔC = discretization timestep
C 5 = time of flight (B)
C∗
5

= optimal time of flight (B)
‖x‖ = ℓ2 norm of x
� = quaternion product

∗Undergraduate Student, Mechanical and Aerospace Engineering

1

II. Introduction
The powered descent guidance problem is concerned with finding the optimal sequence of thrust vectors that allows

a vehicle to decelerate itself from some initial position and velocity to perform a soft landing at some specified target on
the ground while consuming as little fuel as possible. By minimizing fuel usage, the divert capabilities of the vehicle
are maximized. This problem is of great importance to companies like SpaceX, who land their boosters propulsively,
and for JPL, who need to land their rovers near important scientific targets on Mars. For both SpaceX and JPL, it would
be ideal to solve this problem online due to uncertainty in initial conditions.

However, the general form of the powered descent problem is nonconvex, so it is not feasible to solve online during
vehicle descent, since nonconvex problems can have up to an exponential runtime and local minima are not guaranteed
to be global minima. This leads to difficulty in solution convergence. On the other hand, some convex problems, such as
second order cone problems (SOCPs), can be solved in polynomial time using interior point methods.

The main source of nonconvexity is the lower throttle bound on the propulsion system. Bipropellant chemical
engines such as the ones used on SpaceX’s Falcon 9 cannot continuously be throttled from 0% to 100% thrust. There
exists a lower bound on the thrust achievable by the engine. Attempting to throttle below this limit can cause improper
fuel mixing leading to combustion instabilities which can severely damage the engines. However, it can be shown that
the 3DOF problem (where the vehicle is modeled as a point mass) can be reformulated as a finite dimensional second
order cone problem (SOCP) by introducing a slack variable to lift the dimensionality of the thrust vector [1]. This
technique is referred to as “lossless” convexification, meaning that the problem relaxation does not remove any part of
the feasible set and a solution to the relaxed convex problem constitutes a solution to initial nonconvex problem. A
proof for this is given in [1].

The solution to this SOCP is a solution to the fixed terminal time problem, meaning that the time-of-flight is specified
a priori to the solution of the SOCP, and the solution to this problem generates the optimal thrust sequence which
results in minimal fuel consumption for that specified time-of-flight. However, solving this SOCP does not allow one to
determine whether the specified time of flight is fuel optimal across all times-of-flight. For example, a time-of-flight of
20 seconds may result in 30kg of fuel being consumed, but a time-of-flight of 18 seconds may result in 20kg of fuel
being consumed. To find the optimal time-of-flight, the SOCP must be solved many times by varying the time-of-flight
until a minimum fuel cost is found. To turn the fixed terminal time problem into a free final time problem, the fixed time
SOCP should be wrapped in a time-of-flight search loop.

This scheme can then be implemented as an online model predictive controller where at the beginning of the
timestep, the free-final time problem is solved using the current state, the first thrust vector is implemented, and the
dynamics is stepped forward in time. At the beginning of the next timestep, the free-final time problem is solved again
given the current state and yet again only the first thrust vector is implemented. This process is then repeated until the
vehicle lands.

To get this algorithm to work on actual vehicles rather than idealized point masses, attitude control need to be
considered. The "proper" way of solving the powered descent problem for a rigid body would be to explicitly consider
attitude dynamics in the formulation of the optimization problem. However, attitude dynamics occurs on much shorter
timescales than translational dynamics, so we can get away with solving the SOCP to get a desired thrust vector, run an
attitude controller to get the desired moment, then blend the two to get the throttle (thrust magnitude) and gimbal angle.
A sketch of this process is given in figure (1).

III. Dynamics
The dynamics can be split into three main parts: translational dynamics, attitude dynamics, and mass depletion

dynamics. For translational dynamics, we will assume that the gravitational field is uniform, which is a good assumption
if the vehicle is close the the surface of the planet. We will also assume that there is no air resistance. Under these
assumptions, the translational equation of motion is

¥r = g + Z

<
(1)

For attitude dynamics, we will consider applied moments in the body frame, which is centered at the vehicle’s center
of mass and whose axes are the principle axes of the vehicle. Considering moments in the body frame makes it easier to
turn throttle and gimbal angle into a net moment. We will neglect aerodynamic moments. Since we are also using
quaternions as the attitude convension, we must also present the quaternion kinematics equation. Both the attitude
dynamics equation of motion and the quaternion kinematic equation are given below.

2

I ¤8 + 8 × (I8) = S (2)

¤q = 1
2
q �

[
0
8

]
(3)

As the engines fire and fuel is burnt, the mass of the vehicle decreases. We can define a mass depletion parameter
and then the mass depletion dynamics.

U =
1

�B?60
(4)

¤< = −U‖Z‖ (5)

The above equation assumes that the engine’s specific impulse is independent of throttle. For real engines this is
not true, since �B? is a function of combustion chamber pressure, and as an engine is throttled, the chamber pressure
fluctuates. However, we will use this simplifying assumption.

IV. Translational Controller
In this section, we will assume the vehicle is a point mass. Firstly, we will look at the general non-convex problem,

convixify it, then discretize it so it can be solved using interior point methods.

A. The General Non-Convex Problem
In the general minimum fuel powered descent problem, we are looking for the sequence of thrust vectors that

minimize the amount of fuel burned while guiding the vehicle from some initial position and velocity to the ground at a
specified landing site. This problem has state and input constraints. The main state constraints are the dynamics given
by equations (1) and (5) and a glideslope constraint that keeps the vehicle within an upwards opening cone with apex at
the landing site. This glideslope constraint is to prevent translation near the ground which could result in the vehicle
hitting a rock or other objects near the surface. The input constraints are the lower and upper throttle bounds. We can
also implicitly define a pointing constraint where we constrain all thrust vectors to being within some angle of vertical.
Formally, this problem can be written as

Problem 1

min
C 5 ,Z (C)

∫ C 5

0
U‖Z (C)‖ 3C

subject to ¥r (C) = g + Z (C)/<(C) ¤<(C) = −U‖Z (C)‖

Z (C) · e3 ≤ ‖Z (C)‖2>B(\<0G) ∀C ∈ [0, C 5]

0 < d1 ≤ ‖Z (C)‖ ≤ d2 ∀C ∈ [0, C 5]

<(0) = <F4C <(C 5) ≥ <3A H
r (0) = r0 ¤r (0) = ¤r0 r (C 5) = 0 ¤r (C 5) = 0

‖(r‖ + 2>r ≤ 0 ∀C ∈ [0, C 5]

3

where

(B

[
1 0 0
0 1 0

]
(6)

2> B
[
0 0 −C0=

(
c
2 − W

)]
(7)

The lower throttle bound results in the nonconvexity of the input set.

B. Lossless Convexifying Throttle Bounds
The lower throttle bound can be convexified by introducting the slack variable Γ. The new problem becomes

Problem 2

min
C 5 ,Z (C) ,Γ(C)

∫ C 5

0
Γ(C) 3C

subject to ¥r (C) = g + Z (C)/<(C) ¤<(C) = −UΓ(C)

Z (C) · e3 ≤ Γ(C)2>B(\<0G) ∀C ∈ [0, C 5]

‖Z (C)‖ ≤ Γ(C) 0 < d1 ≤ Γ ≤ d2 ∀C ∈ [0, C 5]

<(0) = <F4C <(C 5) ≥ <3A H
r (0) = r0 ¤r (0) = ¤r0 r (C 5) = 0 ¤r (C 5) = 0

‖(r‖ + 2>r ≤ 0 ∀C ∈ [0, C 5]

Looking at figure (2), one can geometrically see why introducing Γ convexifies the thrust bounds. The initial thrust
bounds is an annulus and thus is nonconvex, but by introducing Γ and the constraint ‖Z (C)‖ ≤ Γ(C), the annulus is
converted into a frustum which is convex.

Introducing the slack variable Γ expands the feasible set, so clearly the optimal solution to Problem 1 is in the
feasible set for Problem 2. In addition, the solution to Problem 2 is the solution to Problem 1 [1].

C. Change of Variables
In order to more easily formulate Problem 2 as a SOCP, we must perform the following change of variables:

f =
Γ

<
and u =

Z

<
(8)

The translational and mass depletion dynamics in Problem 2 can be rewritten as

¥r (C) = g + u(C) (9)

¤<(C)
<(C) = −Uf(C) (10)

Solving equation (10) yields

<(C) = <0 exp
[
−U

∫ C 5

0
f(g) 3g

]
(11)

Minimizing the fuel consumed is equivalent to maximizing the final vehicle mass. Since U > 0, minimizing fuel is
equivalent to minimizing

4

∫ C 5

0
f(C) 3C (12)

The control input constraints now become

‖u(C)‖ ≤ f(C) (13)

d1
<(C) ≤ f(C) ≤

d2
<(C) (14)

The constraint given by equation (14) is nonconvex. To geometrically see this, look at the doubly shaded region in
figure (3).

To convexify this constraint, we will introduce

I B ln< (15)

Now we can rewrite equations (10) and (14) as

¤I(C) = −Uf (16)

d1 exp[−I(C)] ≤ f(C) ≤ d2 exp[−I(C)] (17)

The constraint given by equation (17) is still nonconvex. To geometrically see this, look at the doubly shaded region
in figure (4).

To convexify equation (17), we can take the Taylor expansion of both sides of the inequality and keep the quadratic
term on the lower bound and linear term on the upper bound. This result in

`1 (C)
[
1 − (I(C) − I0 (C)) +

(I(C) − I0 (C))2
2

]
≤ f(C) ≤ `2 (C) [1 − (I(C) − I0 (C))] (18)

where

I0 (C) = ln(<F4C − Ud2C) (19)

`1 (C) = d14
−I0 (C) (20)

`2 (C) = d24
−I0 (C) (21)

To geometrically see the convexity of this constraint, refer to the doubly shaded region in figure (5). It can also be
seen that I0 (C) is a lower bound on I(C) at time t. We can also construct an upper bound on I0 (C). This gives us another
constraint,

ln(<F4C − Ud2C) ≤ I(C) ≤ ln(<F4C − Ud1C) (22)

Problem 2 can now be approximated as the following continuous time SOCP as,

Problem 3

min
C 5 ,u (C) ,f (C)

∫ C 5

0
f(C) 3C

subject to ¥r (C) = g + u(C) ¤I(C) = −Uf(C)

u(C) · e3 ≤ f(C)2>B(\<0G) ∀C ∈ [0, C 5]

5

‖u(C)‖ ≤ f(C) ∀C ∈ [0, C 5]

`1 (C)
[
1 − (I(C) − I0 (C)) + (I (C)−I0 (C))

2

2

]
≤ f(C) ≤ `2 (C) [1 − (I(C) − I0 (C))] ∀C ∈ [0, C 5]

ln(<F4C − Ud2C) ≤ I(C) ≤ ln(<F4C − Ud1C) ∀C ∈ [0, C 5]

I(0) = ln(<F4C) I(C 5) ≥ ln(<3A H)

r (0) = r0 ¤r (0) = ¤r0 r (C 5) = 0 ¤r (C 5) = 0

‖(r‖ + 2>r ≤ 0 ∀C ∈ [0, C 5]

D. Discretization
Problem 3 is an continuous time SOCP. However, to solve this problem using interior point methods, it needs to

be converted into a finite size SOCP with a fixed time-of-flight. To do this, we must discretize the problem. The
discretization scheme I implemented is a zero order hold.

8 =
C

ΔC
8 = 1, . . . ,) (23)

u(C) = u8 ∀C ∈ [C8 , C8+1) (24)

I(C) = I8 ∀C ∈ [C8 , C8+1) (25)

With a zero order hold, the dynamics simply become the constant acceleration kinematic equations and the objective
becomes negative of the natural log of the terminal mass, which corresponds to maximizing the terminal vehicle mass.

Problem 4

min
u0 ,...,u)−1 ,f0 ,...,f)−1

−I)

subject to r8+1 = r8 + ¤r8ΔC + 1
2 (u8 − g)ΔC2

¤r8+1 = ¤r8 + (u8 − g)ΔC

z8+1 = I8 − Uf8ΔC

u8 · e3 ≤ f82>B(\<0G)

‖u8 ‖ ≤ f8 ∀8 ∈ [0,)]

`1,8

[
1 − (I8 − I0,8) + (I8−I0,8)

2

2

]
≤ f8 ≤ `2,8 [1 − (I8 − I0,8)] ∀8 ∈ [0,)]

ln(<F4C − Ud28ΔC) ≤ I8 ≤ ln(<F4C − Ud18ΔC) ∀8 ∈ [0,)]

I(0) = ln(<F4C) I()) ≥ ln(<3A H) ∀8 ∈ [0,)]

r (0) = r0 ¤r (0) = ¤r0 r ()) = 0 ¤r ()) = 0

‖(r8 ‖ + 2>r8 ≤ 0 ∀8 ∈ [0,)]

When problem 4 is solved given some initial conditions, a trajectory is generated along with the sequence of control
inputs that produce the trajectory. To implement this as a model predictive controller, we will take the first thrust vector
and call that our desired thrust vector.

6

E. Time-of-Flight Search
Problem 4 is a fixed time-of-flight problem, meaning that the time horizon for the optimization is specified a priori

to the solution of the problem. While a solution to Problem 4 is optimal for that specified time-of-flight C 5 , it may not
be optimal across all time-of-flights.

The mass of fuel consumed is a function of C 5 , and we are looking for the time of flight, C∗
5
that minimizes the fuel

consumed. In my simulation, I noticed that C∗
5
tended to be the smallest C 5 that resulted in a feasible solution to Problem

4. In my implementation, I did not explicity optimize over all C 5 , but this heuristic worked very well. To properly
conduct a time-of-flight search, one can utilize techniques from derivative free optimization or estimate the gradient of
this function via finite differences then use gradient descent.

The time-of-flight search was the most computationally intensive part of the simulation, since Problem 4 must be
solved repeatedly until C∗

5
is found. To greatly speed up this process, I initialized the time-of-flight search with a guess.

This guess was a few seconds fewer than C∗
5
from the previous time-of-flight search. Computing C∗

5
for the first stage

took a while, but for all following stages, C∗
5
was computed quickly due to the initialization.

After the time-of-flight search is concluded we take the first thrust vector that results from solving Problem 4 using
C∗
5
and call that our desired thrust vector.

V. Attitude Controller
We will now focus on designing our attitude controller. The key assumption that we made which allowed us to

safely ignore attitude dynamics in our formulation of the optimization problem is that attitude control occurs on a much
shorter timescale than translational control. Thus, when we design our attitude controller, we must ensure that it is
able to track references quickly with very little lag. If nonidealizations such as an offcentered engine gimbal were to
be considered, an integrator would be needed to remove the resulting steady state error, but for simplicity the attitude
controller implemented will be PD.

The attitude controller will attempt to point the vehicle along the desired thrust vector, which is generated by the
translational controller. Feedback will be performed on the vector term of the orientation quaternion. If we simplify our
system from three degrees of rotational freedom to a single degree of freedom, we can define transfer functions from the
error quaternion to controller torque and from controller torque to vehicle pointing angle, where � is the moment of
inertia of the vehicle. It is important to note that while a desired moment about the long axis of the vehicle is computed,
it can never be satisfied, since the engine on the vehicle has no moment arm to create a rolling moment.

) (B)
4(B) = ? + B 3 (26)

\ (B)
) (B) =

1
�B2

(27)

From iteration in my simulation and using SISOTool in Matlab, I found that the following gains led to quick enough
rise-time and good disturbance rejection.

 ? = �

 3 = 0.6�

At each timestep, based on the desired thrust and the attitude controller, we can generate a desired moment.

VI. Thrust Allocator
The vehicle’s engine is able to impart both a force and a moment via thrust vectoring. There is a gimbal system that

is able to point the nozzle of the engine. For our vehicle, we have two inputs: the throttle of the engine (the magnitude
of the applied force) and the gimbal angle of the engine (a unit vector that points along the direction of thrust). Using
these two inputs it is impossible to simultaneously satisfy the desired thrust vector and desired moment. For example,
consider a perfectly upright rocket with a desired thrust vector pointing up and to the right. This will result in a desired
clockwise moment as computed by our attitude controller. In order to impart this clockwise moment, we need a thrust

7

vector pointing up and to the left, which is characteristic of a non-minimum phase system. Thus, we need an intelligent
way of setting the throttle and gimbal angle.

The solution to this lies in our assumption that attitude dynamics occurs on a much shorter timescale than translational
dynamics. We will firstly set the throttle to the magnitude of the desired thrust vector, then set the gimbal angle to the
angle necessary to impart the desired moment on the vehicle. Since this attitude adjustement would occur relatively
quickly, the vehicle will soon be aligned along the desired thrust vector and be able to satisfy it. This scheme is described
in [2].

We are using a scheme that completely satisfies the desired moment, but we are introducing a bit of lag between the
desired thrust vector and imparted thrust vector. This lag results in loss of optimality, but if the attitude controller is
quick enough, the loss will be small.

VII. Simulation
From the start of this project I knew that conducting the time-of-flight search and reoptimizing trajectory would

be very computationally expensive, so I wrote the entire simulation in C++ as opposed to Matlab for quicker runtime
(although I still used Matlab for plotting).

The state variable for this simulation is in R14 and contains the position, velocity, orientation quaternion, angular
velocity, and mass. The simulation uses a fixed stepsize Runge Kutta 4th order integrator to step the state forward
according to the dynamics, which are encoded in equations (1), (2), (3), (5). The pseudocode for the simulation is given
below.
Algorithm 1: 6DOF Simulation
while Altitude ≥ 0 do

Z34B = PositionController(r, v, <);
S34B = AttitudeController(Z34B , q, 8);
throttle, gimbal angle = ThrustAllocator(Z34B , S34B);
L=4C , S=4C = GenerateForcesMoments(throttle, gimbal angle, <, q);
L=4C , S=4C = ProcessNoise(L=4C , S=4C);
state = step(state, L=4C , S=4C);

end

Initially, I wanted to use CVXGEN to autocode a custom solver for Problem 4, but CVXGEN only supports linear
and quadratic programs, so I turned to alternatives. I ended up using Embedded Conic Solver (ECOS) [3] with Epigraph
[4] as an interface for problem formulation. Epigraph made it easy to specify each of the constraints separately rather
than performing the matrix packing by hand and feeding ECOS a problem of the form:

min 2>G

B.C. �G = 1

Gx ≤ ℎ

(28)

In this simulation, the changing center of mass of the vehicle, the changing inertia tensor, gimbal lag, thrust lag, and
sensor noise are not implemented. If I had more time I would add these to the simulation as well as some type of state
estimator.

VIII. Results
For all the simulations I conducted, I used the following mass properties and engine properties. The mass properties

correspond to a vehicle about the size of SpaceX’s Falcon 9 first stage. I also assumed that this powered descent was
taking place on earth, so 6 = 9.807 </B2

<3A H = 25600 :6
< 5 D4; = 10000 :6
A = 1.86 <
; = 41.2 <
d1 = 164 :#
d2 = 411 :#

8

�B? = 311 B
To construct the inertia tensor, I modeled the vehicle as a uniformly dense cylinder, whose inertia tensor is given by:

I =


1
4<'

2 + 1
12<;

2 0 0
0 1

4<'
2 + 1

12<;
2 0

0 0 1
2<'

2

 (29)

A. 6DOF MPC Trajectory without Disturbances
Figures (6), (7), (8), (9) show two trajectories: one is the 6DOFMPC trajectory, where both translational and attitude

control are active, and Problem 4 is solved repeatedly at each timestep to obtain C∗
5
, then only the first desired thrust

vector is taken and blended with the desired moment vector to get the throttle and gimbal angle. The other trajectory is
the optimal trajectory that is obtained by solving Problem 4 with C∗

5
at the very first timestage. This trajectory is the one

that would be followed if the vehicle were modeled as a point mass, and thus is a 3DOF trajectory.
As you can see from the figures, the 6DOF MPC trajectory takes a wider turn to get to the landing site. This is

caused by the lag that attitude dynamics induces between the desired thrust vector and the actual thrust vector. The
quicker the attitude controller, the less noticable this lag will be.

B. 6DOF MPC with Disturbances
When I started adding disturbances and attempted to solve the 6DOF MPC trajectories using Problem 4, the

trajectory would be partially generated, but then the solver would fail to find a solution. I realized that with disturbances,
some of the constraints in problem 4 became too restrictive to allow for a feasible solution, especially if the vehicle is
pushed significanly off-course by the disturbances. For example, it may not be possible to find a solution that lands
exactly at the origin if the vehicle is near the ground, but far from the origin, similarly it may not be possible to find a
solution where the vehicle touches down with zero velocity. To solve these issues, I modified Problem 4 into Problem 5,
which is given below:

Problem 5

min
u0 ,...,u)−1 ,f0 ,...,f)−1

−I) + _[

subject to r8+1 = r8 + ¤r8ΔC + 1
2 (u8 − g)ΔC2

¤r8+1 = ¤r8 + (u8 − g)ΔC

I8+1 = I8 − Uf8ΔC

u8 · e3 ≤ f82>B(\<0G)

‖u8 ‖ ≤ f8

`1,8

[
1 − (I8 − I0,8) + (I8−I0,8)

2

2

]
≤ f8 ≤ `2,8 [1 − (I8 − I0,8)]

ln(<F4C − Ud28ΔC) ≤ I8 ≤ ln(<F4C − Ud18ΔC)

I(0) = ln(<F4C) I()) ≥ ln(<3A H)

r (0) = r0 ¤r (0) = ¤r0 0 ≤ r ()) · e3 ≤ n ‖ ¤r ())‖ ≤ X

[≥ ‖(r ())‖
‖(r8 ‖ + 2>r8 ≤ 0

Where [is a new parameter that penalizes deviation from landing at the origin, _ is a landing error aversion
parameter that can be tuned to penalize fuel consumption and landing error by different amounts, X is some acceptable
maximum terminal speed that is close to zero, and n is some acceptable terminal height that should be very close to
zero. All of these parameters, except [can be tuned to relax the constraints which makes the system more robust to

9

disturbances rather than binding the terminal state at zero position and velocity, which will frequently lead to no feasible
solution under disturbances.

Figures (10) and (11) are generated from a 6DOF MPC simulation with disturbances. I modeled disturbances as
additive forces and moments. The standard deviation of the disturbance force was 3000 # and the standard deviation of
the disturbance moment was 3000 # .

In figure (10) the red quivers are the thrust vectors at each timestep, and the black lines are projections of the
trajectory onto the XY, YZ, and XZ planes. From figure (11), we can see that the optimal control law tends to either
apply maximum thrust or minimum thrust. This seems pretty intuitive, since it acts similar to a bang-bang controller,
which would be the optimal control law for powered descent in the 1D case.

C. Monte-Carlo
Finally, I ran a set of 150 Monte-Carlo runs where I varied the initial position and velocity of the vehicle and

repeatedly ran the 6DOF MPC simulation with disturbances to generate a set of landing positions. The initial position
and velocity were gaussian with mean and covariance matrices given below.

`A =


0
0

2000

 < (30)

ΣA =


250000 0 0

0 250000 0
0 0 10000

 <2 (31)

`E =


0
0
−50

 </B (32)

ΣE =


100 0 0
0 100 0
0 0 100

 <2/B2 (33)

Figure (12) shows the landing locations of the 150 trials. All but five of the landings are shown in this figure. As
can be seen from the figure, the majority of landings occur within a two meter radius of the intended landing site.

IX. Future Work
In this paper, I did not consider attitude dynamics or disturbances in the formulation of the convex optimization

problem. In the future, I would like to do some work that explicity considers attitude dynamics, for example Successive
Convexification [5]. I would also like to consider disturbances and use techniques from [6].

X. Conclusion
In this paper I have recreated JPL’s G-FOLD algorithm based on papers [1] and [2], and I have implemented it

as a model predictive controller. Then, I reformulated the discretized problem to be more robust to disturbances
and conducted a set of Monte-Carlo trials to obtain a landing ellipse. I have learned a great deal about convex
optimization, MPC, and writing simulations from this project. I would like to thank Kyle Krol for his help with
debugging parts of my simulation and other guidance during this project. The codebase for this project can be found at
https://github.com/govindchari/nsim.

References
[1] Acikmese, B., and Ploen, S. R., “Convex Programming Approach to Powered Descent Guidance for Mars Landing,” Journal

of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366. https://doi.org/10.2514/1.27553, URL https:
//doi.org/10.2514/1.27553.

10

https://github.com/govindchari/nsim
https://doi.org/10.2514/1.27553
https://doi.org/10.2514/1.27553
https://doi.org/10.2514/1.27553

[2] Açıkmeşe, B., Casoliva, J., Carson, J., and Blackmore, L., “G-FOLD: A Real-Time Implementable Fuel Optimal Large Divert
Guidance Algorithm for Planetary Pinpoint Landing,” LPI Contributions, 2012, pp. 4193–.

[3] Domahidi, A., Chu, E., and Boyd, S., “ECOS: An SOCP solver for embedded systems,” European Control Conference (ECC),
2013, pp. 3071–3076.

[4] Niederberger, S., “Epigraph,” https://github.com/EmbersArc/Epigraph, 2020.

[5] Szmuk, M., Reynolds, T. P., and Açıkmeşe, B., “Successive Convexification for Real-Time Six-Degree-of-Freedom Powered
Descent Guidance with State-Triggered Constraints,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020, p.
1399–1413. https://doi.org/10.2514/1.g004549, URL http://dx.doi.org/10.2514/1.G004549.

[6] Ridderhof, J., and Tsiotras, P., “Minimum-fuel Powered Descent in the Presence of Random Disturbances,” 2019. https:
//doi.org/10.2514/6.2019-0646.

Appendix

Fig. 1 Block Diagram

Fig. 2 Nonconvex and Convex Thrust Bounds [1]

11

https://github.com/EmbersArc/Epigraph
https://doi.org/10.2514/1.g004549
http://dx.doi.org/10.2514/1.G004549
https://doi.org/10.2514/6.2019-0646
https://doi.org/10.2514/6.2019-0646

Fig. 3 Nonconvexity of Equation (14)

Fig. 4 Nonconvexity of Equation (17)

Fig. 5 Convexity of Equation (18)

12

Fig. 6 Isometric view of 6DOF MPC and 3DOF Trajectories

Fig. 7 XY Projection of 6DOF MPC and 3DOF Trajectories

13

Fig. 8 YZ Projection of 6DOF MPC and 3DOF Trajectories

Fig. 9 XZ Projection of 6DOF MPC and 3DOF Trajectories

14

Fig. 10 6DOF MPC Trajectory with Disturbances

Fig. 11 Throttle for 6DOF MPC Trajectory with Disturbances

15

Fig. 12 Results from Monte-Carlo Simulation

16

Govind Chari

	Nomenclature
	Introduction
	Dynamics
	Translational Controller
	The General Non-Convex Problem
	Lossless Convexifying Throttle Bounds
	Change of Variables
	Discretization
	Time-of-Flight Search

	Attitude Controller
	Thrust Allocator
	Simulation
	Results
	6DOF MPC Trajectory without Disturbances
	6DOF MPC with Disturbances
	Monte-Carlo

	Future Work
	Conclusion

