
1

Survey on Synthesis of Accelerated
Gradient-Based Optimization Algorithms

Govind M. Chari

Abstract— Recently, optimization researchers started
viewing optimization algorithms as dynamical systems.
This view allowed them to apply techniques from system
and control theory to analyze and even synthesize acceler-
ated optimization algorithms. This article presents a survey
of accelerated first-order algorithms for the minimization of
smooth, strongly convex functions, an overview of recent
developments in the synthesis of these algorithms, a review
of a recent paper in this area, and some ideas for future
research directions. All code used to generate figures is
available here: https://github.com/govindchari/synthesis.

Index Terms— Convex Optimization, Convex Synthesis,
Linear Matrix Inequalities, Lyapunov Analysis

I. INTRODUCTION

Numerical optimization is an area of applied mathematics
which is concerned with developing algorithms for minimizing
some function which may be subject to constraints. This field
is widely applicable from developing trajectory optimization
algorithms to land rockets to computing optimal allocations of
assets in a financial portfolio to balance expected return and
risk [1] [2].

One popular class of optimization algorithms are first-
order or gradient-based algorithms. These algorithms aim to
minimize the function using only gradient, or first-order infor-
mation. Some examples of first-order algorithms are gradient
descent or projected gradient descent. These are in contrast
to second-order algorithms which use the function’s Hessian,
or second-order information. Some examples of second-order
algorithms are Newton’s method and interior point methods.

The advantage of first order methods is that they require less
information about the function, and require less computational
effort. Second-order algorithms requires Hessian information
which is O(n2) storage where n is the problem size, and
naively requires O(n3) floating-point operations per iteration
due to the inversion of the Hessian matrix. On the other
hand, first-order algorithms requires storing only gradient in-
formation which is O(n) storage, and requires O(n) floating-
point operations per iteration. Of course, first-order algorithms
take more iterations to converge since each iteration uses less
information about the function, but a general rule of thumb
is that first-order algorithms scale better than second-order
algorithms in terms of storage and run-time as problem size
increases.

Govind M. Chari is with the Aeronautics & Astronautics Depart-
ment, University of Washington, Seattle, WA 98105 USA (e-mail:
gchari@uw.edu).

Typical proofs for convergence and rates of convergence for
gradient-based algorithms require applying numerous smooth-
ness and strong convexity inequalities in a case-by-case basis
for each algorithm, however recent work such as [3] treat
optimization algorithms as dynamical systems and use ideas
from robust control to prove convergence rates for first-order
algorithms in a unified framework. These ideas were also
used in [3] to synthesize accelerated gradient-based algorithms
that are more robust to noisy gradients. Accelerated methods
are variants of gradient-based methods which, when properly
tuned, achieve faster convergence rates than gradient descent.

Paper [4], which is the focus of this survey, extends the idea
of using Lyapunov analysis for algorithm synthesis to derive
algorithms for optimization and saddle-point problems. This
allows the synthesis of algorithms for minimizing strongly
convex functions subject to linear equality constraints while
also providing a certificate of convergence rate.

II. BACKGROUND INFORMATION AND TERMINOLOGY

In this section we will review some basic concepts needed
to understand the synthesis of gradient-based algorithms. In
this section, we will consider unconstrained problems of the
following form

minimize
x∈Rn

f(x) (1)

where f is convex and continuously differentiable.
We will denote the optimizer of the function as x∗ and the

optimal objective value as f∗

A. Smoothness and Strong Convexity

Two important properties of convex functions that are are
used to prove convergence of algorithms are strong convexity
and smoothness.

A differentiable function f(x) is said to be λ-smooth if the
following holds

∥∇f(x)−∇f(y)∥ ≤ λ∥x− y∥ (2)

This condition is simply saying that the gradient of the
function is λ-Lipschitz. Gradient based algorithms require
functions to be λ-smooth to show global convergence for fixed
step-sizes. A larger λ means the function’s gradient changes
quickly so the algorithm should take smaller steps so it does
not overshoot the minimum.

https://github.com/govindchari/synthesis


2

If the function is also twice differentiable, (2) can be restated
as follows

∇2f(x) ≼ λI (3)

where I is the identity matrix and ≼ indicates the Loewner
ordering. This condition is saying that the largest eigenvalue
of the Hessian of the objective function is upper bounded by
some constant λ.

From the definition of smoothness, we can also show the
following

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
λ

2
∥y − x∥22 (4)

This statement says that smooth functions can be upper
bounded globally by some quadratic

Fig. 1. Functions with different smoothness constants in one dimension

Convexity and λ-smoothness are the only requirements
needed to show global convergence of fixed-stepsize gradient
based algorithms, however we can show faster convergence
rates if the function is also µ-strongly convex.

A function f(x) is µ-strongly convex if the following
function is convex

g(x) = f(x)− µ

2
∥x∥22 (5)

This condition is saying that a strongly convex function
must be curving upwards in all directions

Alternatively we can say that a µ-strongly convex function
satisfies the following

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥y − x∥22 (6)

If µ = 0 we can recover the definition of convexity which
states that all convex functions are lower-bounded by their
tangent line. When we have a strongly convex function, we
can say that the function is globally lower-bounded by some
quadratic function.

We will denote the class of λ-smooth and µ-strongly convex
functions as Sµ,λ.

If the function is also twice differentiable, (5) can be restated
as follows

∇2f(x) ≽ µI (7)

This condition is saying that the smallest eigenvalue of the
Hessian of the objective function is lower bounded by some
constant µ.

Putting together (4) and (6) we can write the following
inequality for Sµ,λ functions which shows that we can globally
upper and lower bound this class of functions with quadratics.

µ

2
∥y−x∥22 ≤ f(y)−f(x)−∇f(x)⊤(y−x) ≤ λ

2
∥y−x∥22 (8)

For twice differentiable Sµ,λ functions we can bound the
Hessian as follows

λI ≼ ∇2f(x) ≼ µI (9)

Fig. 2. Red denotes the graph of a strongly convex function, and blue
denotes the graph of a non-strongly convex function

For Sµ,λ functions we can define the condition number of
the function as follows

κ =
λ

µ
(10)

Functions with larger condition number, also called ill-
conditioned functions, have more elliptic level curves and are
more difficult to minimize using gradient based methods.

B. Lyapunov Analysis

A classical result in nonlinear system theory is using
Lyapunov functions to show global exponential stability for
nonlinear dynamical systems.

Consider the following discrete-time nonlinear system:

xk+1 = g(xk) (11)



3

Fig. 3. Gradient Descent on ill-conditioned function

Fig. 4. Gradient Descent on well-conditioned function

where x∗ ∈ Rn is a stationary point such that x∗ = g(x∗).
If we can construct a Lyapunov function V (x) such that

α∥x− x∗∥22 ≤ V (x) ≤ β∥x− x∗∥22 ∀x ∈ Rn (12a)

V (xk+1)− ρ2V (xk) ≤ 0 ∀x ∈ Rn (12b)

for some α > 0, β > 0, and ρ ∈ [0, 1], then the fixed point
x∗ of (11) is globally exponentially stable [5]. Mathematically,
this can be expressed as

∥x∗ − xk∥ ≤
√

β

α
ρk∥x∗ − x0∥ ∀x0 ∈ Rn (13)

We can think of V (x) as some function that quantifies the
energy in the system for some state x. If this energy decreases
as the system progresses forward, then we would expect the
state to converge to some fixed point. This is the intuitive idea
of what (12) and (13) are expressing.

This theory is used in [3], [4], and [6] to analyze conver-
gence rates of first-order algorithms. Using Lyapunov theory
to analyze convergence of optimization algorithms requires

viewing the optimization algorithms as dynamical systems of
the form (11), then applying ideas from system and control
theory.

C. Convergence Rates
When showing convergence results for optimization algo-

rithm we want to derive an upper bound on the algorithm’s
convergence to either x∗ or f∗. Here we will focus on
bounding convergence to x∗, since this is the bound we
directly get by applying Lyapunov analysis as in (13).

Gradient based algorithms have linear convergence for func-
tions that are in Sµ,λ.

Linear convergence take the following form:

∥x∗ − xk∥ ≤ cρk (14)

where c > 0 is some constant and ρ ∈ [0, 1] is the linear
convergence rate to the minimizer. This class of convergence
rates is called linear since the distance to optimal is a line
when plotted on a log plot. For the same constant c if ρ is
smaller, then convergence is quicker.

Fig. 5. Illustration of different classes of convergence rates

It is important to keep in mind that just because one
algorithm has a better linear convergence rate (smaller ρ) than
another does not mean it will be faster in practice for two
reasons. Firstly, the constant c in (14) plays a large role in
the proven convergence rate. Figure 6 demonstrates this well.
Secondly, these proven rates are upper bounds on convergence
rates, so an algorithm could perform much better in practice
than the proven rates.

III. ACCELERATED FIRST ORDER METHODS

In this section we will only consider functions in Sµ,λ.
The first optimization algorithm proposed was gradient

descent by Cauchy in 1846 [7]. However, for ill conditioned
functions , this method can be painfully slow as the iterates
will “zigzag” downhill as in 3.

The gradient descent update rule is given below

xk+1 = xk − η∇f(xk) (15)



4

Fig. 6. Linear convergence with different constants

where η = 2
µ+λ is the step-size.

The convergence rate of gradient descent can be written as
follows:

∥x∗ − xk∥ ≤ c

(
1− 1

κ

)0.5k

(16)

We can see that as the condition number κ of the function
increases, the linear convergence rate approaches unity which
indicates that very little progress is made during each iteration.

It is possible to come up with accelerated methods which
achieve faster convergence rates than gradient descent. We will
explore some accelerated methods in this section.

A. Polyak’s Heavy-Ball Method

In 1964 Boris Polyak invented the heavy ball method which
was an attempt to develop a gradient based algorithm that
was faster than gradient descent and didn’t suffer from the
same “zigzag” problem as gradient descent [8]. This method
makes use of momentum. With this addition of momentum
it is difficult for iterates to sharply change directions which
damps the oscillations in figure 3. Additionally it allows for
longer steps to be taken in regions of low curvature.

The heavy-ball algorithm is as follows

xk+1 = (1 + β)xk − βxk−1 − α∇f(xk) (17)

for some choice of α and β ∈ [0, 1]. It is possible to choose
these parameters to achieve a local convergence rate of

∥x∗ − xk∥ ≤ c

(√
κ− 1√
κ+ 1

)0.5k

(18)

We can see that as the condition number κ of the function
increases, the linear convergence rate approaches unity much
slower than the linear convergence rate for gradient descent.
Thus, heavy-ball will converge much quicker than gradient
descent locally, however it is not globally convergent for Sµ,λ

functions [3].

B. Nesterov’s Accelerated Gradient Method
In 1983, Yuri Nesterov developed an accelerated gradient

based algorithm that uses momentum similar to Polyak’s
Heavy-Ball method but is implemented slightly differently [9].
The update rule for this algorithm is below

xk+1 = yk − α∇f(yk) (19a)
yk+1 = (1 + β)xk − βxk−1 (19b)

where α = 1/λ and β = (
√
κ−1)/(

√
κ+1). This algorithm

is globally convergent for Sµ,λ functions. The convergence
rate of Nesterov’s accelerated gradient (NAG) method can be
written as follows:

∥x∗ − xk∥ ≤ c

(
1− 1√

κ

)0.5k

(20)

This algorithm is a much better choice than gradient descent
for functions in Sµ,λ.

C. Triple Momentum Method
In 2018, Bryan Van Scoy, Randy A. Freeman, and Kevin

M. Lynch developed the triple momentum (TM) method for
minimizing functions in Sµ,λ [10]. This algorithm uses three
momentum terms and is as follows:

ξk+1 = (1 + β)ξk − βξk−1 − α∇f(yk) (21a)
yk = (1 + γ)ξk − γξk−1 (21b)
xk = (1 + δ)ξk − δξk−1 (21c)

If we define ρ = 1−1/
√
κ, the triple momentum parameters

are

(α, β, γ, δ) =

(
1 + ρ

λ
,

ρ2

2− ρ
,

ρ2

(1 + ρ)(2− ρ)
,

ρ2

1− ρ2

)
(22)

This algorithm, is globally convergent for Sµ,λ functions,
with rate given by

∥x∗ − xk∥ ≤ c

(
1− 1√

κ

)k

(23)

This algorithm is the fastest known globally convergent
gradient-based algorithm for strongly convex, smooth func-
tions. Notice that the linear convergence rate is double that of
NAG.

D. Theoretical Lower Bound
In Nesterov’s book, he also proves a lower bound on the

convergence rate for any first-order method [11]. This lower
bound states that any first-order algorithm must satisfy

∥x∗ − xk∥ ≥ c

(√
κ− 1√
κ+ 1

)k

(24)

This bound shows that it is impossible for any first-order
algorithm to have a linear convergence rate ρ such that



5

ρ ≤
(√

κ− 1√
κ+ 1

)
(25)

This theoretical lower bound is useful to keep in mind when
comparing various first-order optimization algorithms.

Fig. 7. Convergence Rates for different algorithms

Fig. 8. Convergence Upper Bound for different algorithms with same c

From figure 8 it appears that gradient descent is not making
any progress, which shows us how critical it is to have accel-
erated algorithms such as Nesterov’s Accelerated Gradient and
Triple Momentum.

IV. PREVIOUS WORK

The field of applying system and control theory to an-
alyze and synthesize accelerated optimization algorithms is
extremely new. The first paper to do this was by Laurent
Lessard et al. in 2014 [3]. This paper introduces the idea of
using robust control to analyze and synthesize simple gradient-
based algorithms for smooth, strongly convex functions. In
2015, Nishihara et al. used these robust control ideas to
provide a general convergence proof of ADMM with few

G

ϕ

yu

Fig. 9. Block diagram for algorithm analysis

assumptions on specific algorithm parameters [12]. In 2017,
Cyrus et al. derived an accelerated first-order algorithm, they
call the Robust Momentum Method, which has a single
scalar parameter to trade off robustness to gradient noise and
convergence rate. This algorithm was designed using ideas
from control theory [13]. In 2017, Van Scoy et al. use the
same IQC framework presented in [3] to derive and analyze the
triple momentum algorithm. In 2018, Fazlyab et al. extended
the work of using IQCs to analyze optimization algorithms for
non-strongly convex functions and were able to certify sub-
linear convergence of algorithms for this function class [14].

Since [3] was the paper that sparked this field, we will do a
thorough review of its contributions in this section. The authors
of [3] view optimization algorithms for Sµ,λ : Rd → R as a
control system with a nonlinear block, which is the gradient
of the function. If the function is a quadratic, then the gradient
is linear in the decision variable, but for an arbitrary function
in Sµ,λ, the gradient is nonlinear in the decision variable, but
is a sector bounded non-linearity since we know the function
is λ-smooth and µ-strongly convex.

We can think of the algorithm (G in Figure 9), as a
controller for a nonlinear plant with bounded uncertainties (ϕ
in Figure 9).

We can write this mathematically as follows:

ξk+1 = Aξk +Buk (26a)
yk = Cξk +Duk (26b)
uk = ∇f(yk) (26c)

where the first two equations are G, and the last equation
represents ϕ.

If this closed-loop system is stable, this means that the op-
timization algorithm converges to the optimal solution which
is a fixed point of the dynamical system. This problem of
assessing the stability of a forward linear path and a nonlinear
feedback path is called the Lur’e problem [15], and was
heavily studied in the mid to late 1900s.

All the algorithms we explored in Section III can be written
in the form of (26) for different matrices A, B, C, and D. For
example, gradient descent can be written as

[
A B
C D

]
=

[
Id −ηId
Id 0d

]
(27)

We can write Polyak’s heavy ball method as follows:



6

[
A B
C D

]
=

 (1 + β)Id −βId −αId
Id 0d 0d
Id 0d 0d

 (28)

We can write Nesterov’s accelerated gradient method as
follows:

[
A B
C D

]
=

 (1 + β)Id −βId −αId
Id 0d 0d

(1 + β)Id −βId 0d

 (29)

The authors then apply techniques from robust control to
analyze the stability of this closed-loop system. They first
replace the nonlinear function ϕ with a quadratic constraint on
the signals y and u, which is an integral quadratic constraint
(IQC) [16]. The constraint on y and u comes from information
about the gradient such as strong convexity and smoothness.
Any property that can be concluded from this constrained
system without ϕ will also hold for the original system.

Using these IQCs, the authors then derive a Linear Matrix
Inequality (LMI) which, if feasible for a given ρ, certifies
linear convergence of the algorithm under consideration with
rate ρ as shown in (30). An LMI is a generalized inequality
constraint for matrices with respect to the positive semi-
definite cone [17]. It is important to note that the size of the
LMI is independent of the size of the optimization problem.
This is because A, B, and C in (27), (28), and (29) have
repeated diagonal blocks and so do the IQCs. Thus, the LMI
decouples and becomes dimension-independent.

∥ξk − ξ∗∥ ≤
√

cond(P )ρk∥ξ0 − ξ∗∥ (30)

where P ≻ 0 is a matrix that shows up in the LMI, whose
condition number, cond(P ), is within a constant factor of the
condition number of the function being optimized.

The authors then go on to consider the case of analyzing the
stability of accelerated algorithms with noisy gradients which
requires a slightly different IQC.

Finally with all of this tooling in hand, the authors attack
the problem of synthesizing an optimization algorithm. They
first assume a template for their algorithm which is given by
(31). Then for a fixed condition number κ and gradient noise
strength, they generate a grid of tuples (α, β1, β2) and for
each tuple they solve a sequence of feasibility problems with
their LMI to find the (α, β1, β2) combination that results in
the smallest feasible ρ.[

A B
C D

]
=

 1 + β1 −β1 −α
1 0 0

1 + β1 −β2 0

 (31)

Since they assume a very specific form for their algorithm,
they will not be able to discover new algorithms, just the right
parameters (α, β1, β2) to maximize the convergence rate of
algorithms in their proposed form.

One major result from the IQC framework is the triple
momentum method by Van Scoy et al. [10]. In this paper,
the authors mention that IQCs were used to motivate the
design of the triple momentum algorithm. In the appendix of

their paper, they show how they can use IQCs to analyze this
algorithm. As as previously mentioned, this algorithm is the
fastest known globally convergent gradient-based algorithm
for smooth, strongly convex functions.

V. PAPER REVIEW

This section will review paper [4]: Synthesis of acceler-
ated gradient algorithms for optimization and saddle point
problems using Lyapunov functions and LMIs, discuss its
contribution to the field of accelerated gradient methods, show
some numerical results of the proposed algorithm, and provide
a critique of the paper.

A. Summary

This paper presents a procedure to synthesize accelerated
algorithms to minimize smooth, strongly convex functions and
solve saddle problems. The class of objectives functions under
consideration is defined by a generalized sector condition.
By also considering saddle point problems, the synthesized
algorithm can be used to perform equality constrained min-
imization if the objective function is the Lagrangian of the
equality constrained problem.

The generalized sector condition that defines the class of
objective functions f : Rd 7→ R can be written as

1

2
∥y − x∥2M ≤ f(y)− f(x)−∇f(x)⊤(y − x) ≤ 1

2
∥y − x∥2L

(32)
where M ∈ Sd, L ∈ Sd are symmetric matrices. ∥ · ∥M is

the norm with respect to M . If f is twice differentiable we
can write the sector condition as follows

M ≼ ∇2f(x) ≼ L (33)

We will denote this class of functions as SM,L. Notice that
if M = µI and L = λI , this sector condition defines Sµ,λ

functions.
The paper aims to design gradient-based algorithms for

SM,L of the following form.

zk+1 = Azk +B∇f(Czk) (34)

where zk ∈ Rn, f : Rd → R, and the matrices A ∈ Rd×d,
B ∈ Rn×d, C ∈ Rd×n are algorithm parameters to be
designed. We can see that this is a condensed form of (26).
Notice that for acceleration, we require that d > n, since our
state z must include the momentum term. For NAG we can
see that z = (x, y) where x and y are defined in (19).

The synthesis procedure involves constructing a Lyapunov
function and defining a Linear Matrix Inequality (LMI) based
on (12) and solving a sequence of feasibility Semidefinite
Programs (SDPs) to find the smallest possible ρ such that

∥zk − z∗∥ ≤ cρk (35)

where x∗ = Cz∗ is the minimizer of f or the saddle point
of f .



7

B. Contribution

The analysis and synthesis of gradient-based algorithms for
Sµ,λ had already been introduced prior to the publication of
[4] in papers such as [3] and [10].

The first contribution of this paper is introducing an anal-
ysis and synthesis framework for the more general class of
functions, SM,L. This class of functions includes saddle-
point problems which allows for the synthesis of equality
constrained optimization problems. Secondly, the synthesis
of the algorithm is not more conservative than its analysis
framework. In some other works, some assumptions such as
fixed IQC multipliers or quadratic Lyapunov functions are
necessary to go from analysis to synthesis. In [4], the analysis
to synthesis step is lossless meaning the analysis LMI is
feasible if and only if the synthesis LMI is feasible. In the
framework of this paper a very general algorithm template
is presented as shown in (34). In papers such as [3], a very
particular block diagonal structure is assumed such as in
(31). This more general template allows the recovery of triple
momentum which is not possible in the synthesis framework
presented in [3].

A final smaller contribution of this paper is the ability
to analyze and synthesize optimization algorithms with just
Lyapunov theory. Papers such as [3] and [18] use Integral
Quadratic Constraints which is more technical than just Lya-
punov theory.

C. Proof Sketch

The formal problem statement of the paper is to find A, B,
C, and the smallest possible ρ such that the algorithm given
by (34) is globally convergent to the unique stationary point
z∗ of f ∈ SL,M with linear convergence rate ρ.

The authors first reformulate the problem to an equivalent
problem with z∗ = 0. This is likely done to ease notational
burden for the following proofs. Next, the authors propose a
non-quadratic Lyapunov function, which contains information
about the sector bounded gradients, and write a Linear Matrix
Inequality (LMI) which is sufficient for the condition in (12)
to hold. This is a key difference from earlier works such as [3]
where a quadratic Lyapunov function is chosen but the LMI
it generates is infeasible and an IQC is needed to capture the
sector bounds on the gradient of the function.

This LMI is linear in the Hessian of the Lyapunov function
P for fixed ρ, but becomes nonlinear if A, B, and C are
optimization variables. This LMI is called the analysis LMI
and for a given algorithm parameterized by A, B, C and a rate
ρ, feasibility of the analysis LMI certifies that the algorithm
converges with rate ρ.

The next step is to derive an LMI that is linear in A, B, and
C such that we can pick a rate ρ and if the LMI is feasible with
that ρ, we are given the algorithm parameters A, B, and C that
achieves convergence with rate ρ. The authors then derive this
LMI using Schur complements and other tools. This synthesis
LMI is the key result of the paper.

D. Numerical Results
Here we will show some numerical results of the synthe-

sized algorithm from [4]. Firstly, we synthesize algorithms
for a range of condition numbers in order to compare the
synthesized convergence rate to the fastest known rate (Triple
Momentum). The results are in figure 10. We are able to repli-
cate the results in the paper which showed that the synthesized
algorithms for minimizing strongly convex functions achieve
the same convergence rate as triple momentum.

Fig. 10. Convergence Rate of Triple Momentum and Synthesized
algorithm are identical

We then test the practical performance of the synthesized
algorithm on a bivariate quadratic function with a condition
number κ = 1000 and a random initial guess. We run gradient
descent, Nesterov’s accelerated gradient, triple momentum,
and the synthesized algorithm on this function, and the dis-
tance to optimal along with the proven convergence bounds.

Fig. 11. Convergence of various algorithms; circles denote theoretical
upper bounds for each algorithm

There are a number of conclusions to draw from this graph.
Firstly, the proven upper bound for the synthesized algorithm
is extremely conservative, since the constant in the upper



8

bound is proportional to the condition number of the derived
Lyapunov function which is near singular. However, we see
that the algorithm drastically outperforms its upper bound in
this example. This is an unsubstantiated claim made in [4],
but here is some evidence to back their claim.

We know that the upper bounds of triple momentum and the
synthesized algorithm have the same convergence rate from
figure 10, but we notice that at least for this example, the two
algorithms have almost the same practical performance.

We also see that gradient descent is painfully slow as
expected and its upper bound on convergence is tight for
this example. A final interesting observation is that Nesterov’s
accelerated gradient drastically outperforms its upper bound
for this example.

VI. FUTURE WORK

A. Critiques & Suggestions
The most major concern with the framework the paper

introduces for synthesis is that the synthesis LMI scales with
the dimension of the optimization problem. For large-scale
applications such as machine learning, signal processing, or
image processing we can have hundreds of thousands or even
millions of optimization variables. Synthesizing algorithms for
these large problems using the framework provided in the
paper requires solving a series of SDPs of the same dimension
which is intractable. This constraint limits the utility of the
introduced framework to small problems. This is in contrast
to the IQC framework introduced in [3] where the SDP to be
solved is independent of the problem dimension since a more
restrictive algorithm template is chosen.

A second concern is that the upper bound is proportional to
the condition number of the Lyapunov function. Typically the
constraint that the Lyapunov function must be positive definite
is active and thus the condition number of the Lyapunov
function can be arbitrarily large and result in bounds of form
(14) with extremely large c.

Another concern is that numerical results of synthesized
algorithms are not presented at all in this paper. There are
results comparing the linear convergence rate ρ from the
synthesized algorithm to other algorithms, but no actual test
results are presented where the synthesized algorithm is used
to minimize or find the saddle point of the function. This
concern is compounded by the fact that the upper bound
provided has a constant that is very large. Thus, the authors do
not present evidence that the synthesized algorithms perform
well in practice, contrary to their claim “The true transient
behavior of designed optimization algorithms was usually
much better than the bound”.

A final criticism is that the authors have not shared their
code to do algorithm synthesis, which makes it difficult for
someone reading the paper to verify the claim that synthe-
sized algorithms performs better than the provided bounds in
practice.

B. Open Problems
Extending the synthesis of optimization algorithms for more

general cases such as inequality constraints and non-smooth

functions would be beneficial. One immediate challenge is
that we cannot obtain linear convergence for these function
and constraint classes, so we will not be able to satisfy the
Lyapunov decrement condition. However, deriving a generic
synthesis framework for more general function classes would
be a major contribution.

This framework can also be used to synthesize precondition-
ers for optimization problems. A preconditioner is a change
of primal and dual variables that result in faster convergence
for a given algorithm. Currently, preconditioners are mostly
designed via heuristics with little math to back up intuition,
so preconditioner design using Lyapunov theory would be a
great contribution to this field. There are some issues with
directly applying this framework, namely, we would have
to restrict ourselves to equality constrained optimization of
strongly convex functions, but this is a promising direction
for future research.

Similar to [3], this framework should also be extended
to synthesize algorithms for saddle point problems in the
presence of noisy gradients.

VII. CONCLUSION

Although the dynamical system perspective of optimization
algorithms is fairly new, it has delivered some very promis-
ing results such as a more general analysis framework for
optimization algorithms based on dissapativity theory and the
derivation of the fastest globally convergent algorithm for the
minimization of strongly convex functions [6] [10]. There
remains a lot of interesting extensions of this framework to
design new preconditioners or new algorithms.

REFERENCES

[1] Lars Blackmore. Autonomous precision landing of space rockets. In in
Frontiers of Engineering: Reports on Leading-Edge Engineering from
the 2016 Symposium, volume 46, pages 15–20, 2016.

[2] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77,
March 1952.

[3] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and
design of optimization algorithms via integral quadratic constraints.
SIAM J. Optim., 26(1):57–95, January 2016.

[4] Dennis Gramlich, Christian Ebenbauer, and Carsten W Scherer. Syn-
thesis of accelerated gradient algorithms for optimization and saddle
point problems using lyapunov functions and LMIs. Syst. Control Lett.,
165:105271, July 2022.

[5] Alexander Mikhailovich Lyapunov. The general problem of the stability
of motion. 1994.

[6] Laurent Lessard. The analysis of optimization algorithms: A dissipativity
approach. IEEE Control Syst., 42(3):58–72, June 2022.

[7] Augustin-Louis Cauchy. Méthode générale pour la résolution des
systèmes d’équations simultanées. 1847.

[8] Boris Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics,
1964.

[9] Y E Nesterov. A method of solving a convex programming problem
with convergence rate. Dokl. Akad. Nauk, 1983.

[10] Bryan Van Scoy, Randy A Freeman, and Kevin M Lynch. The fastest
known globally convergent first-order method for minimizing strongly
convex functions. IEEE Control Syst. Lett., 2(1):49–54, January 2018.

[11] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. Springer Publishing Company, Incorporated, 1 edition, 2014.

[12] Robert Nishihara, Laurent Lessard, Benjamin Recht, Andrew Packard,
and Michael I Jordan. A general analysis of the convergence of ADMM.
February 2015.

[13] Saman Cyrus, B Hu, Bryan Van Scoy, and Laurent Lessard. A robust
accelerated optimization algorithm for strongly convex functions. 2017.



9

[14] Mahyar Fazlyab, Alejandro Ribeiro, Manfred Morari, and Victor M
Preciado. Analysis of optimization algorithms via integral quadratic
constraints: Nonstrongly convex problems. SIAM J. Optim., 28(3):2654–
2689, January 2018.

[15] A. I. Lur’e and V. N. Postnikov. On the theory of stability of control
systems. Applied Math Mechanics, 1944.

[16] A. Megretski and A. Rantzer. System analysis via integral quadratic
constraints. IEEE Transactions on Automatic Control, 42(6):819–830,
1997.

[17] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan
Balakrishnan. Linear matrix inequalities in system and control theory.
SIAM, 1994.

[18] Laurent Lessard and Peter Seiler. Direct synthesis of iterative algorithms
with bounds on achievable worst-case convergence rate, 2020.


	Introduction
	Background Information and Terminology
	Smoothness and Strong Convexity
	Lyapunov Analysis
	Convergence Rates

	Accelerated First Order Methods
	Polyak's Heavy-Ball Method
	Nesterov's Accelerated Gradient Method
	Triple Momentum Method
	Theoretical Lower Bound

	Previous Work
	Paper Review
	Summary
	Contribution
	Proof Sketch
	Numerical Results

	Future Work
	Critiques & Suggestions
	Open Problems

	Conclusion
	References

