
Development of a Three Degree-of-Freedom Simulation

for Thrust Vectoring Vehicles

Govind Chari

In this paper I will discuss the dynamics, control, and state estimation for a three degree-
of-freedom thrust vectoring vehicle. This is a final project report for MAE 4780: Feedback
Controls

Nomenclature

x System State

y Observed State

u Control Input

r Reference State

A Linearized Continuous-Time State Transition Matrix

B Control Matrix

C Observation Matrix

F Linearized Discrete-Time State Transition Matrix

Pa|b State Covariance Matrix at time a given information at time b

x̂a|b Estimated state at time a given information at time b

Q Process Noise Covariance

R Sensor Noise Covariance

Kf Kalman Gain

Kc Full-State Feedback Gain

1 Introduction

Over the summer, I worked with a friend to develop a vertical takeoff and landing vehicle powered by two
axially aligned, counter-rotating (for roll control), racing drone motors with servo-driven thrust vectoring
fins for vertical stabilization. When designing the controller for this vehicle, I utilized a PID controller with
manually tuned gains. I did not consider vehicle dynamics. As a result, the vehicle crashed many, many
times before successfully stabilizing. After taking Feedback Controls, I realized I now have the ability to
systematically design a controller, so I decided to revisit the problem as my final project. However, due to
time restrictions, I decided to model the problem in three degrees of freedom rather than the full six.

1

2 Theory

2.1 Dynamics

The two forces considered in the dynamics of the vehicle are gravity and the thrust from the propulsion
system. A free body diagram can be drawn and analyzed to derive equations of motion for the system.

Figure 1: Free Body Diagram

m vehicle mass
I rotational inertia
g gravitational acceleration
x horizonatal displacement
y vertical displacement
θ angular displacement
F magnitude of thrust
f magnitude of thrust in excess of vehicle weight (f = F −mg)
δ angle of thrust vector
L moment arm

By summing forces in the x and y directions and summing moments, the equations of motion can be
derived.

ẍ = −Fsin(θ + δ)

m
(1)

ÿ =
Fcos(θ + δ)

m
− g (2)

θ̈ = −FLsin(δ)

I
(3)

By introducing f , the equations can be rewritten

2

ẍ = −gsin(θ + δ)− f

m
sin(θ + δ) (4)

ÿ =
f

m
cos(θ + δ) (5)

θ̈ = −mgL
I

sin(δ)− fL

I
sin(δ) (6)

These equations will now be linearized assuming θ,δ, and f are small.

ẍ = −gθ − gδ (7)

ÿ =
f

m
(8)

θ̈ = −mgL
I

δ (9)

The dynamics can now be written in canonical state space form.

ẋ = Ax +Bu (10)

d

dt

x
y
θ
ẋ
ẏ

θ̇

 =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

x
y
θ
ẋ
ẏ

θ̇

+

0 0
0 0
0 0
0 −g
1
m 0

0 −mgL
I

(
f
δ

)

2.2 Controller Design

As a result of the separation principle, the controller and estimator can be designed separately and still
ensure stability, given the controller and observer only have stable eigenvalues.

Firstly, I checked controllability of the system in Matlab. Intuitively it can be seen that with variable
thrust and thrust angle, the system can reach any state in the state space. Sure enough, the controllability
matrix is full rank, and thus the eigenvalues of the closed-loop system can be placed anywhere with a judicious
choice of Kc. The control law I utilized takes the following form.

u = Kc(r − x) (11)

I made no attempt to design any sort of optimal controller. Frankly, I do not have enough knowledge
of optimal controls yet, and as a result I chose the closed-loop eigenvalues rather arbitrarily. The only
restriction I kept in mind was not placing my eigenvalues too aggressively. Aggressive eigenvalues result in
sharp corrections which could quickly result in the system leaving the linear regime of the dynamics model,
which can result in instabilities.

After some experimenting, I decided on eigenvalues of -1, -2, -3, -4, -5, and -6, as they resulted in good
stability while still being conservative enough to keep the system in the linear regime.

3

2.3 Estimator Design

A typical avionics suite would be a GPS, IMU, and barometer. Thus, the measurements taken would by x,
y, and θ̇. The observation equation is linear and can be written in canonical form below.

y=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 x

Firstly, observability needs to be proven. Intuitively, if we differentiate the x and y terms, we can get ẋ
and ẏ, and if we integrate θ̇ we get θ. Sure enough, the observability matrix is full rank, so the system is
observable with the given measurements and dynamics.

Since the dynamics are nonlinear, I decided to use a discrete-time Extended Kalman Filter as the state
observer. The EKF uses a similar predict-update algorithm that is used by the linear Kalman Filter,
but firstly the dynamics are linearized about the previous state estimation and current control input via
computation of the Jacobian. This is a necessary step to ensure that the state’s probability distribution
remains Gaussian after state propagation. The algorithm is mathamatically layed out below.

Linearization
F = ∂f

∂x |xk−1,uk

Predict
x̂k|k−1 = f(xk−1,uk)

Pk|k−1 = FPk−1F
T +Q

Update

S=CPk|k−1C
T +R

Kf = Pk|k−1C
TS−1

x̂k = x̂k|k−1 +Kf (y − Cx̂k|k−1)

Pk = (I −KfC)Pk|k−1

3 Simulation

3.1 Overview

I made a Simulink model for the system’s dynamics, control, and state estimation. In this simulation, I
attempted to make the vehicle follow a simple ascent, translation, descent trajectory similar to the SpaceX
SN5 and SN6 tests. I used the following vehicle parameters.

m 1 kg
I 0.002 kg m2

L 10 cm

4

Figure 2: Full Block Diagram

The zero-order holds are meant to simulate flight software with a 100Hz control cycle, which was the
quickest that data could be pulled from the IMU and Barometer that I used over the summer. Furthermore,
I utilized two saturation blocks for the actuators. I limited the thrust vector angle to within 10 degrees
from equilibrium. Similarly I allowed the thrust to range from 0 to 2mg. This assumption means that the
vehicle has a maximum thrust to weight ratio of 2. Most real engines have a lower throttle bound, in fact
the SpaceX Falcon 9 booster lands with a minimum thrust to weight ratio greater than one. However, I will
ignore this aspect for this model. It would be a fun problem to try to revisit at some point.

3.2 Reference Trajectory

Figure 3: Reference Trajectory Block

The first two signals describe the reference x and y positions. I designed these signals to generate the

5

ascent, translation, descent trajectory that I want. The rest of the reference signals are set to zero. The
exact shape of the x and y reference trajectories can be found in the appendix.

3.3 Controller

The feedback controller inputs the state error and outputs the desired control commands. To design the
controller, I used the place command in Matlab to place the poles at -1, -2, -3, -4, -5, and -6 for reasons
mentioned in the Controller Design section. The controller gain matrix is shown below.

Kc =

(
−10.66 13.12 45.94 −13.68 7.59 4.81
0.0127 −0.0015 −0.1245 0.0226 −3.65e− 4 −0.0278

)

3.4 Dynamics Model

Figure 4: Nonlinear Dynamics Block

When I designed this block I used the full nonlinear equations of motion (Equations 4, 5, and 6) in order
to see how effective the controller based on the linearized model would work to control the full nonlinear
plant. The dynamics block does all computations in continuous time to mimic real dynamics.

6

3.5 Sensors/Noise

Figure 5: Sensor Block

First, the full state is multiplied by C to extract x, y, and θ̇, which are the measured states. Next, the
measurements pass through a zero order hold to mimic sensors that sample at 100Hz. Finally, Gaussian
noise is added to all three measurements to mimic sensor noise. For the x reading, I added noise with a
standard deviation of 1 meter, which is what I observed with the GPS I used. For the y reading, I added
noise with a standard deviation of 0.1 meters, which is what I observed with the barometer I used. For the
θ̇ reading, I added noise with a standard deviation of 0.01 rad/s. I estimated this since I did not do any
experiments on my gyro over the summer.

Figure 6: Process Noise

I added Gaussian process noise to both controller commands. I added noise with a standard deviation of
1 newton to the force and noise with a standard deviation of 0.5 degrees to the thrust vector angle command.
I chose these numbers somewhat arbitrarily. I wanted them to be significant enough to disturb the system,
but not too large to be infeasible.

7

3.6 Extended Kalman Filter

Figure 7: Extended Kalman Filter

The EKF block takes in the noisy sensor measurements y and the control inputs u, and outputs the
estimated state. I wrote an EKF function in Matlab, for simplicity (the code is included in the Appendix).
The two delays are necessary for inputting the previous estimated state and the state covariance matrix into
the function to calculate the next estimated state and state covariance matrix.

Firstly, a nonlinear state transition function must be written.

xk+1 = f(xk,uk+1) =

ẋk∆t+ xk
ẏk∆t+ yk
θ̇k∆t+ θk

−
(
g + f

m

)
sin(θ + δ)∆t+ ẋk

f
mcos(θ + δ)∆t+ ẏk

−L
I (mg + f)sin(δ)∆t+ θ̇k

(12)

The first step in the EKF is linearization via computation of the Jacobian. I computed this analytically
beforehand for speed rather than numerically computing it with each control cycle.

∂f

∂x
=

1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t

0 0 −∆t
[
cos(θ + δ)

(
g + f

m

)]
1 0 0

0 0 −∆t
(

f
msin(δ + θ)

)
0 1 0

0 0 0 0 0 1

(13)

To initialize the EKF I used a vector of all zeros for the initial state and the identity matrix for my initial
state covariance. For the sensor noise matrix R, I used variances very similar to the actual sensor variances,
since these numbers will be well known from sensor testing. For the process noise covariance, I used the
actual injected variance transformed by the control matrix. It was difficult to make the filter converge unless
the process noise was more or less well understood.

8

4 Results

In this section I will present plots that show the performance of the Extended Kalman Filter as well as the
trajectory tracking.

Figure 8: Measured vs Estimated X-Position

Figure 9: Measured vs Estimated Y-Position

As can be seen in the two plots, the EKF is doing a good job of filtering noise from the sensor readings,
especially for x-position.

9

Figure 10: Reference vs Actual Trajectory

As can be seem from the above plot, the vehicle does a great job of tracking to within 35 centimeter
on ascent and descent. This is great especially considering that the standard deviation of GPS readings is
1 meter. The main problem that can be seen is that the vehicle has about 5% steady-state error in the
y-direction. This is somewhat expected, given that this controller did not include an integrator or integrated
states.

5 Further Work

This project was a great learning experience for me: it was the first time I attempted trajectory tracking,
first time I wrote an Extended Kalman Filter, and first time I used Simulink. I think that some natural
next steps for me would be to learn dynamic programming, convex optimization, optimal controls, trajectory
optimization and trajectory tracking. I would also like to experiment with some more exotic observers such
as Unscented Kalman Filters and Particle Filters.

I would like to this general class of powered descent problems some time in the future. Perhaps I’ll try
to rebuild my VTOL vehicle and upgrade it with the capability to perform a bellyflop-propulsive landing
similar to SpaceX’s Starship, while conducting online trajectory optimization and utilizing some form of
optimal controls to minimize battery power.

6 Appendix

10

Figure 11: Reference X-Position

Figure 12: Reference Y-Position

EKF.m

1 f unc t i on [xhat , P1] = EKF(x ,P, u , y , dt ,C)
2 f=u (1) ;
3 d e l t a=u (2) ;
4 m=1;
5 g =9.8 ;
6 L=0.2;
7 I =0.002;
8

9 %Process Noise Covariance
10 Q=[0 0 0 0 0 0 ;
11 0 0 0 0 0 0 ;
12 0 0 0 0 0 0 ;
13 0 0 0 0 .0096 0 0 . 4 8 0 2 ;
14 0 0 0 0 1 0 ;
15 0 0 0 0 .4802 0 2 4 . 0 1 0 0] ;
16

17 %Sensor Noise Covariance
18 R=diag ([0 . 9 0 .01 0 . 0 0 5]) ;
19

20 i f s i z e (x)==1
21 x0=ze ro s (6 , 1) ;
22 P0=eye (6) ;
23 e l s e
24 x0=x ;
25 P0=P;
26 end
27

28 %State Trans i t i on Matrix (Jacobian o f Nonl inear State Trans i t i on)
29 F=[1 0 0 dt 0 0 ;
30 0 1 0 0 dt 0 ;
31 0 0 1 0 0 dt ;
32 0 0 −dt∗ cos (d e l t a+x0 (3)) ∗(g+f /m) 1 0 0 ;
33 0 0 −dt∗ s i n (d e l t a+x0 (3)) ∗(f /m) 0 1 0 ;
34 0 0 0 0 0 1] ;
35

11

36 %Nonl inear State Propagation to get p r ed i c t ed xhat
37 x1 p =[x0 (4) ∗dt+x0 (1) ;
38 x0 (5) ∗dt+x0 (2) ;
39 x0 (6) ∗dt+x0 (3) ;
40 −dt∗ s i n (d e l t a+x0 (3)) ∗(g+f /m)+x0 (4) ;
41 dt∗ cos (d e l t a+x0 (3)) ∗(f /m)+x0 (5) ;
42 −dt∗ s i n (d e l t a) ∗(m∗g∗L/ I+f ∗L/ I)+x0 (6)] ;
43

44 %Linea r i z ed Covariance Propagation to get p r ed i c t ed P
45 P1 p=F∗P0∗F. ’+Q;
46

47 %Total Error
48 S=C∗P1 p∗C. ’+R;
49

50 %Kalman Gain
51 Kk=P1 p∗C. ’∗ Sˆ−1;
52

53 %Outputs
54 xhat=x1 p+Kk∗(y−C∗x1 p) ;
55 P1=(eye (6)−Kk∗C) ∗P1 p ;

12

