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Foreword

This document is comprised of the information I learned in my first year on the Cornell
Rocketry Team as a member of the Propulsion Subteam. During this time, I learned a great
deal about combustion modeling and solid motor theory from by Daniel Morera, Matthew
Schneider, and nakka-rocketry.net. I learned nozzle theory and design from online resources
such as nakka-rocketry.net and aerodynamics4student.com and from the textbook Elements
of Rocket Propulsion by Sutton.

This is meant as an introductory text/reference guide for solid propulsion and nozzle
design. It is, in my opinion, a good starting place for those interested in propulsion. If
this text gets math heavy at some points and seems intimidating, I would suggest that you
focus your attention on the intuitive ideas behind the math rather than cramming equations
into your head. I am a huge proponent of having an intuitive, first-principles understanding
rather than focusing too much on the math and memorizing equations, so I try my best to
include an intuitive explanation of anything I cover.

After reading though this text, if you are interested in this field, I would suggest designing
a mock solid motor and nozzle yourself by creating the Matlab scripts described in this text
given some thrust and impulse. The best test of knowledge is actually doing. If you want
to learn more about propulsion, I would suggest reading Elements of Rocket Propulsion, as
that text discusses propulsion much more in-depth than this text.
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Chapter 1

Introduction

This document is divided into four parts: Solid Motor Theory, Combustion Modeling,
Nozzle Theory, and Nozzle Design. At the end of reading this document, if you read carefully,
you will understand how a rocket motor works thoroughly and be able to derive design
parameters, such as chamber pressure, grain geometry, and nozzle expansion ratio from
system level requirements like desired impulse and thrust. In addition, you will also be able
to design the optimal nozzle based on these design parameters. Throughout this text, I
strive to give the reader an intuitive understanding of the physical mechanisms governing
the design, but also try to present enough mathematics, so this process can be replicated
and fully understood quantitatively.

The first section, Solid Motor Theory, explores what a motor is, what it consists of, how
it works, and discusses the parameters necessary to properly design a solid motor. The
second section, Combustion Modeling, introduces a method that is used to derive design
parameters from desired impulse and thrust. The third section, Nozzle Theory covers the
basics of compressible fluid mechanics and dives into the math and physics which govern flow
through a nozzle. The final section, Nozzle Design, covers how to design the most efficient
nozzle contour using the method of characteristics and Rao’s method.

To fully understand all of the information in this text, it is assumed that the reader
is very comfortable with mechanics at the level of an introductory physics class, as well
as a basic understanding of thermodynamics and fluid mechanics. In order to implement
Combustion Modeling and Nozzle Design, the reader must know a coding language, ideally
Matlab (unless you want to evaluate the Prandtl-Meyer Relation by hand). A good reader
should take time reading and not rush through. Most of all, have perseverance. You will
likely get frustrated at certain points because material isn’t clicking fast enough in your head.
After all, you are learning Rocket Engineering, but persist. Given enough mental effort, you
can fully understand every sentence in this book.
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Chapter 2

Solid Motor Theory

2.1 Motor Basics

A rocket motor is the propulsion unit of the rocket. It consists of the motor casing
(combustion chamber), the grains (propellant), the igniter, and the nozzle. The motor casing
is a long cylindrical tube that contains the grains inside of it, the igniter on one end, and
the nozzle on the other end. In the image below, the ”Metal Structure” is the motor casing.

Figure 2.1: Motor Cross Section from www.narom.no/

A motor generates thrust from the conservation of momentum. The motor gives the hot
gases it generates a significant amount of momentum in one direction, so the motor (and the
rocket it is attached to) is propelled in the opposite direction.

The propellant is composed of a fuel and an oxidizer. When the propellant is ignited,
the oxidizer generates a significant amount of oxygen and allows the fuel to burn. This
reaction is very exothermic and generates many, many moles of combustion product (mainly
gases). Since the gases are in a fixed-volume container (the motor casing) they are also very
high pressure. As a result, these gases contain a significant amount of energy due to its hot
temperature and high pressure. These hot, pressurized gases are then accelerated through
the nozzle to the highest possible speeds (to get the most thrust) and thus, this thermal and
pressure energy is converted to kinetic energy.
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2.2 Compressible Fluid Dynamics Basics

In this section we will start to learn the basic physics needed to move on with the
study of solid rocket motors. A more in-depth section on Compressible Fluid Dynamics
will be presented in the Nozzle Theory section, however, it is important to have a ba-
sic understanding of this field before moving on with Solid Motor Theory. This section
will present formulas and describe the intuition behind each of them, but will not present
their derivations. The derivations can be found in any fluid dynamics textbook, or at
http://www.aerodynamics4students.com/gas-dynamics-and-supersonic-flow/.

2.2.1 Compressible Flows

Fluid Dynamics can be be broadly separated into two groups: incompressible, and
compressible. An incompressible fluid is one whose volume doesn’t change significantly
under pressure. This means that the density remains constant. Think of water. If you
squeeze water, its volume doesn’t really change. A compressible fluid is one whose volume
does change when pressure is applied and consequently so does its density. Think of air. If
you squeeze air, its volume shrinks, this is the whole principle behind air compressors.

Figure 2.2: Compressible vs Incompressible Fluids from https://www.quora.com/

When studying moving fluids, we can even treat air as incompressible if it isn’t moving
too fast. If air is moving slowly and hits a surface, its density doesn’t really change, but if
air is moving very fast and hits a surface, it gets compressed. But where do we draw the
line? The rule of thumb is to treat airflow as incompressible if it is travelling slower than
Mach 0.3 and treat it as compressible if it is travelling faster than Mach 0.3. Mach numbers
of a flow are defined as the ratio of the speed of that flow to the speed of sound in that fluid.
So if the combustion product of a motor is travelling twice the local speed of sound, we say
it is travelling at Mach 2.

The exhaust gases of a rocket are well in excess of Mach 0.3, which makes compressible
fluid dynamics a very useful tool to understand and design rocket propulsion systems.
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2.2.2 Supersonic Flow

In addition to being compressible, most of the flow studied in propulsion are also
supersonic, or are faster than the local speed of sound. Supersonic flows can behave strangely
and lead to some counter-intuitive results. In order to understand these flows, it is important
to understand what ”local speed of sound” means.

The local speed of sound is the speed at which pressure waves propagate through the
fluid. Pressure waves are how the fluid ”communicates” changes in fluid properties.

The two equations below define Mach number, and give a formula to calculate the speed
of sound in a fluid.

M =
v

a
(2.1)

a =
√
γRT (2.2)

Equation 2.2 says that the speed of sound is proportional to the temperature of the gas.
The speed of sound is the speed at which pressure waves can be propagated. It is limited
by the speed of the gas molecules themselves. If you increase the temperature of the gas,
then the gas molecules speed up and they can propagate pressure waves faster and thus the
speed of sound in the gas increases. Similarly, if you increase the specific gas constant, which
can be done by choosing a lighter gas, the speed of sound increases. If the mass of the gas
molecules decrease, they move faster given the same kinetic energy, thus the speed of sound
increases.

We said that pressure waves are how changes in fluid properties are communicated,
however, this idea is abstract, so let’s consider an example.

Imagine an object being placed in a subsonic airflow (the red lines in Figure 2.3). Even
before contacting the object, the streamlines separate and start to go around the object, this
is an experimental fact. Some air hits the object so the object becomes a source of pressure
signals (the blue lines in Figure 2.3) that ”warns” the air upstream that there is on object
in the way. Having received this ”warning” the air upstream begins to separate even before
contacting the object.

Now let’s analyze the same situation if the object were placed in a supersonic airflow. In
this case again, some air hits the object and the object becomes a source of pressure signals.
However, the pressure signals are travelling slower than the incoming flow, because the flow
is moving faster than the local speed of sound and the pressure signals propagate at the local
speed of sound. This results in the pressure signals bunching up a certain distance in front
of the object. The airflow travels as if there is no object in the way, since it doesn’t receive
a ”warning” until it reaches this bunching of signals. Once it does reach this point, the flow
suddenly turns to avoid the object instead of the smooth turning that occurs in the subsonic
case.

Understanding this example will be critical for understanding other properties of super-
sonic flows.
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Figure 2.3: Subsonic vs Supersonic Flow from http://www.aerodynamics4students.com

2.2.3 Isentropic Flow Basics

As isentropic flow is by definition adiabatic and reversible. This means that no heat
is added or removed from the flow, and the flow is free from any dissipative effects such
as friction. The assumption of isentropic flow is the main assumption that we make when
analyzing nozzles. This approximation is very good unless there is a shock-wave present.
We will consider shocks much more in the Nozzle Theory section, but for now assume that
all flow we deal with will be isentropic.

Two important thermodynamic constants we need to know are Cp and Cv. Both are
properties of a gas, and under the assumption of a calorically perfect gas, these two quantities
are constants and independent of pressure and temperature. The quantity Cp is the specific
heat of of a gas that is under a constant pressure, and Cv is the specific heat of a gas that
has constant volume. If the gas is heated at constant pressure, then as heat is added, the
gas expands and does work on its surroundings. As a result, the heat you put into the gas
goes into expanding it and raising its temperature. However, if you heat a gas at a constant
volume, all of the heat goes into raising its temperature. From this is can be intuitively seen
that Cp will always be greater than Cv. In addition, it can be proven that

Cp + Cv = R (2.3)

Where R is the specific gas constant which is defined as the universal gas constant divided
by the molar mass of that gas.

R =
R

M
(2.4)
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From here on out, R will refer to the specific gas constant and R will refer to the universal
gas constant. Furthermore, we can define another quantity called the ratio of specific heats
which is defined as

γ =
Cp
Cv

(2.5)

It can be seen that γ will always be greater than 1. This mysterious quantity arises in
many, many texts, but is rarely presented with an intuitive explanation.

If a gas has a large Cp with respect to its Cv, you know it takes much more energy to
raise the temperature of the gas at a fixed pressure than at a fixed volume. This means that
the gas expands readily. Thus, gases with a higher ratio of specific heats expand readily and
do more work than gases with lower ratio of specific heats. Phrased differently, if you have
two gases with different ratio of specific heats in identical pistons, and if you were to add
the same amount of heat to both pistons, the piston containing the gas with the larger ratio
of specific heat does more work.

Another important equation is the ideal gas law, which is

p = ρRT (2.6)

Where p is the pressure of the gas, ρ is the density of the gas, R is the specific gas
constant, and T is the temperature of the gas.

2.2.4 Isentropic Flow Relations

The pressure exerted by a moving fluid can be broken into two parts: static pressure and
dynamic pressure. Static pressure is the pressure that you would measure if you measure the
pressure that a flow exerts, and dynamic pressure is the kinetic energy per unit volume of a
flow. The sum of these two parts yields the stagnation (or total) pressure of the flow. This
makes sense coming when considering Bernoulli’s Principle. If a fluid’s velocity increases,
its static pressure decreases. The stagnation pressure of a flow is the pressure that the gas
would exert if brought to rest isentropically. In an isentropic flow, stagnation pressure is
constant at all points in the flow, however the static and dynamic pressures can change at
each point. Mathematically, this corresponds to the formula

p0 = pstatic +
ρv2

2
(2.7)

where p0 is the stagnation pressure, ρ is the density of the fluid in the flow, and v is the
speed of the flow.

Temperature has a similar property. The stagnation temperature of a flow is the tem-
perature that the flow will have if it is brought to rest isentropically. This can be seen when
considering a plane in a supersonic wind-tunnel. As the air is flowing, its temperature isn’t
too high, yet when it is brought to rest by coming into contact with the plane, its temper-
ature increases greatly. This extra thermal energy doesn’t just appear all of a sudden. It is
contained in the kinetic energy of the gas. When the gas is brought to rest, the kinetic energy
is converted to thermal energy, and thus the temperature of the plane’s exterior increases.
Mathematically, this can be represented by

9



T0 = T +
v2

2Cp
(2.8)

where T0 is the stagnation temperature, T is the local temperature at any point in the
flow, and v is the speed of the flow at the point corresponding to T .

Since the static pressure and temperature vary locally with velocity of the flow, density of
the fluid must also vary with flow velocity from the ideal gas law. However, the relationship
isn’t as straight forward as it was for pressure and temperature above. This is because the
density of a flow is related to BOTH the pressure and the temperature. From the equations
2.6, 2.7 and the ideal gas law, we can come up with some relations that relate the stagnation
pressure, temperture, and density to the local pressure, temperature, and density in terms of
the local Mach number. These relations are known as the isentropic stagnation relations. In
addition there are a few more important definitions and relations that all together constitute
the Isentropic Flow Relations. (

p1

p2

)
=

(
ρ1

ρ2

)γ
=

(
T1

T2

) γ
γ−1

(2.9)

p0

p
=

(
1 +

γ − 1

2
M2

) γ
γ−1

(2.10)

T0

T
=

(
1 +

γ − 1

2
M2

)
(2.11)

ρ0

ρ
=

(
1 +

γ − 1

2
M2

) 1
γ−1

(2.12)

A

A∗
=

(
γ + 1

2

)−γ+1
2γ−2

(
1 + γ−1

2
M2
) γ+1

2γ−2

M
(2.13)

Equation 2.9 relates the pressure, density, and temperature between two points in an
isentropic flow, and Equations 2.10-2.12 are the stagnation relations. The stagnation rela-
tions are used to express the pressure, temperature, and density in terms of the stagnation
properties, which are much easier to find. You just need to find a stationary part of the flow,
usually a reservoir upstream and measure its pressure and temperature there.

Equations 2.10-2.12 just say that if you are looking at a fast moving part of the flow, the
pressure, temperature and density are lower than the same properties at their stagnation
point or at any point where the flow is moving slower.

Equation 2.13 allows you to determine the Mach number at any portion of a duct if you
know the cross-sectional area of the duct at that point and the cross sectional area at the
throat. Equation 2.13 is derived from the continuity equation and equations 2.9-2.12. This
equation will be explored more in the nozzle theory section.
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2.2.5 Choked Flow

In a previous section, I mentioned that supersonic flow leads to many counter-intuitive
properties. One such property is the idea of choked flow. This idea has a lot to do with
how a nozzle functions, but knowing the basics will be important to understand Solid Motor
Theory. This idea will be explored more in greater detail in the section on Nozzle Theory.

Normally, if a flow is constricted, it speeds up in order to keep mass flow rate constant.
This is the Venturi Effect. However, choked flow is the point where this relationship breaks
down. If you keep constricting a flow, the flow will only speed up to the local speed of sound,
you cannot make the flow faster than Mach 1 by further constricting it. In addition, the
mass flow rate cannot be increased by decreasing the pressure downstream. This is a rather
abstract definition, so we will consider an example.

Consider flow through a pipe as shown below. The fluid moves from section one though a
constriction into section two (upstream pressure is greater than downstream pressure). From
the Venturi Effect, we know that the fluid will be faster in section two than in section one.
By conservation of mass, we know that the mass flow rate through section one is the same
as the mass flow rate through section two.

Now imagine we lower the downstream pressure. This will cause the flow in both sections
to speed up, and thus the mass flow rate through the pipe increases. This is because the
pressure differential between the two ends of the tube is increased. Now if we keep lowering
the downstream pressure, we will reach the point where the flow in section two reaches
Mach 1. Now, if we continue lowering the downstream pressure, this information cannot be
propagated upstream, since this pressure information is propagated through the fluid at the
speed of sound. Thus, decreasing the downstream pressure will not result in an increase in
mass flow rate or fluid velocity. When this point is reached, we say we have choked flow.

One important thing to keep in mind is that while decreasing the downstream pressure
will not result in an increase in mass flow rate when flow is choked, an increase in upstream
pressure will increase the mass flow rate through the system. This is because increasing the
upstream pressure will increase the density of the fluid, and thus increases the mass flow
rate.

Figure 2.4: Choked Flow

Choked flow allows for a convenient way to calculate the mass flow rate at any point in
the system. The formula for mass flow rate is

ṁ = ρvA (2.14)

Where ṁ is mass flow rate at some point, v is the velocity of the flow at that point, and
A is the cross-sectional area of the pipe at that same point.
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We know that the mass flow rate at all points of the system is the same due to conservation
of mass. We know the cross sectional area of the flow at its minimum point (A∗). We also
know that its velocity is Mach 1 since flow is choked, so we can use Equation 2.2 to calculate
this velocity. We can apply isentropic flow relations to calculate the density of the flow at
the point of minimum cross-sectional area. In the end, we are left with an expression for the
mass flow rate of a choked system in terms of stagnation pressure and temperature, which
are usually known.

ṁ =
p0A

∗
√
T0

√√√√[ γ
R

(
2

γ + 1

) γ+1
γ−1

]
(2.15)

where A∗ is the minimum cross-sectional area of the pipe, also known as the throat.
If we increase the back pressure of the gas, we can get a larger mass flow rate, since the

density of the gas increases. If we increase the temperature of the gas, its density decreases,
so our mass flow rate decreases. If we increase the minimum cross-sectional area, A∗, and
flow remains choked, it makes sense that our mass flow rate will increase, since the opening
for gas to exit through increases in size.

There are two important takeaways from this. When you have choked flow, the velocity
of the gas at the minimum area is Mach 1 and the mass flow rate is fixed throughout the
system and easy to calculate via Equation 2.15.

This concludes the section on the Compressible Fluid Dynamics. Now we will start to
look at how this can be applied in designing a motor for a given thrust and impulse.

2.3 A First Look at Thrust

Since thrust is generated due to conservation of momentum, we can derive an expression
for thrust by differentiating the momentum of the gas.

Fthrust = ṁve + (pe − pa)Ae (2.16)

Where ve is the exit velocity of the gas out of the nozzle, pe is the exit pressure of the
gas, pa is the ambient atmospheric pressure, and Ae is the exit area of the nozzle. The
first term in the equation comes from the conservation of momentum, and the second term
accounts for thrust generated due to a pressure difference between the combustion gases and
the atmosphere. This second term, or pressure thrust, is usually not that significant when
compared to the the first term.

When trying to maximize thrust, we can increase either the mass flow rate, or the velocity
of the gas. In this chapter, we will focus on the former, and in the chapter on nozzles, we
will discuss how to maximize the latter

If we assume that flow is choked (which it is most of the time), we can substitute Equation
2.15 into Equation 2.16. We can also use isentropic flow relations to get an expression for ve
in terms of stagnation pressure and temperature. We will analyze how to get the equation
for ve in the nozzle section, but for now just know that we can get it. We are then left with
the following equation for thrust
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Fthrust = p0A
∗

√√√√ 2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

[
1−

(
pe
p0

) γ−1
γ

]
+ (pe − pa)Ae (2.17)

This can be written in a more compact form that provides more intuition.

Fthrust = p0A
∗Cf (2.18)

Where Cf is the thrust coefficient and is defined as

Cf =

√√√√ 2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

[
1−

(
pe
p0

) γ−1
γ

]
+

(pe − pa)Ae
p0A∗

(2.19)

In both of these equations p0 is the chamber pressure which is also the stagnation pressure.
This is because the velocity of the gas in the chamber is essentially 0 and insignificant when
compared to the velocity of the gas in the nozzle. The quantity A∗ is the cross sectional area
of the throat of the nozzle, and pa is the ambient pressure.

As can be seen from Equation 2.18, the main way we can increase thrust is by increasing
chamber pressure. Although we could also increase the throat area as well, this decreases
the chamber pressure so it won’t affect thrust much. This makes sense, since if there is a
smaller hole for the gas to escape, the pressure will be higher in the motor casing. We will
investigate this relationship much more in the next section.

When we fire a motor, we can plot the thrust it generates over time. If we integrate this
curve, we are left with the total impulse of the motor. So if we want to increase the impulse
of a motor, we can either make it fire for a longer period of time, or we can increase the
thrust it produces. Both factors can be controlled by considering the grain geometry, which
we will look at next.

2.4 Grain Geometry

2.4.1 Grain Basics

A grain is a unit of solid fuel. It is a cylinder of fuel with a hole through the center.
This hole allows the combustion product to flow through the center of the motor and out
through the nozzle. A motor usually has multiple smaller grains than one long grain. The
image below shows multiple grains separated by spacer rings.

Figure 2.5: Motor With Multiple Grains from https://space.stackexchange.com/

Each grain does not have to have a constant diameter circular bore through the center.
There are many other shapes that can be chosen. Each shape will result in different pressure
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vs time curves as the grains burns. In the image below, many different shaped cores are
shown with their respective thrust vs time curve.

Figure 2.6: Core Geometries and Thrust Curves from https://space.stackexchange.com

This text will focus on the BATES grains (grain 1 in Figure 2.6) for simplicity, but
the same ideas apply to other grain shapes, but their analysis is more complicated. When
designing a motor, the main thing to consider is grain geometry. This refers to the number
of grains you will use, their respective length, their outer diameter, and their core diameters.
The outer diameter of the grain is usually already fixed. The outer diameter of the grain is
restricted by the inner diameter of the motor casing, whose outer diameter is restricted by
the diameter of your rocket’s airframe. Since, this factor cannot be chosen, you are left with
deciding the number of grains you want, their lengths, and their core diameters.

When designing a motor you should always keep in mind the desired thrust and impulse.
These are the design specifications that the motor must meet. As mentioned in the previous
section, both of these are influenced by the chamber pressure vs time curve, which in turn
is influenced by the grain geometry. I have said this a number of times, so now let’s jump
right into it.

2.4.2 Grain Burning Physics

The burning of grains is a highly exothermic reaction that generates many moles of
gas. The buildup of this gas in the motor casing is what causes chamber pressure.

Below, a BATES grain is shown. Its two ends and the inner surface (port) are the surfaces
that burn. The outer surface is inhibited (doesn’t burn), since it is bonded to the inside of
the motor casing. In the image, the x with the yellow arrow shows how the dimensions of
the grain change in one time step. The diameter increases by 2x and the length decreases
by 2x.
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Figure 2.7: BATES Grain Surface Regression from http://www.nakka-rocketry.net

The burn rate is defined as the regression distance x divided by the length of the time
step. The burn rate increases as the chamber pressure increases. The relationship between
burn rate and chamber pressure is given by Saint Robert’s Law.

r = apn0 (2.20)

Where a and n are constants that must be derived empirically. These constants are
unique to the fuel that is used. In addition, values of a and n are only valid in 300psi
pressure ranges. So you will have a and n for the 0-300psi pressure range and a different a
and n for the 300-600psi pressure range.

2.4.3 Understanding Pressure Curves

The image below shows a standard pressure curve that you would get from burning a
BATES grain.
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Figure 2.8: Pressure vs Time Curve from http://www.nakka-rocketry.net

As labeled in the image, there are three main phases of the burn: start-up, steady-state,
and tail-off.

During the start-up phase, the grains start to burn and the chamber-pressure starts to
build up. During this quick phase, chamber pressure greatly increases as choked conditions
are established. During steady-state, the rate that gas that is being generated is equal to
the rate at which the gas is leaving the combustion chamber. Since choked conditions are
established, this mass generation rate can be calculated through Equation 2.15. In this phase
the pressure doesn’t vary wildly, and the only variation in pressure is due to changes in the
grain geometry. The steady-state phase is what is tried to control though grain geometry, as
this phase makes up the vast majority of the burn time and thus generates almost all of the
impulse. The tail-off phase is when the grains have finished burning and the motor casing
depressurizes. This phase along with start-up generate negligible impulse.

Using a mass balance, applying isentropic flow relations and Saint Robert’s Law, a dif-
ferential equation for chamber pressure can be derived. (There is an amazing derivation of
this on www.nakka-rocketry.net on the chamber pressure webpage)

V0

RT0

dp0

dt
= Abap

n
0 (ρp − ρ0)− p0A

∗
√

γ

RT0

(
2

γ + 1

) γ+1
2γ−2

(2.21)

Where V0 is the free volume in the combustion chamber, Ab is the surface area of the
burning surface, A∗ is the throat area of the nozzle, and ρp is the density of the propellant.

This differential equation can be solved to find the pressure during start-up. During
steady state dp0

dt
= 0, so Equation 2.21 can be reduced to

p0 = Knρprc
∗ = (Knρpac

∗)
1

1−n (2.22)
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Where Kn is the dimensionless Klemmung Number and c∗ is the characteristic velocity,
which is a measure of combustion efficiency which we will explore more in the Nozzle Theory
Chapter. They are defined as

Kn =
Ab
A∗

(2.23)

c∗ =

√√√√√ RT0

γ
(

2
γ+1

) γ+1
γ−1

(2.24)

The main relationship that should be understood in Equation 2.22 is that as the surface
burn area increases, the chamber pressure increases, and as the throat area decreases, the
chamber pressure increases. This relationship can be intuitively understood. If the burn area
is larger then more gas is being generated, which would increase chamber pressure. If throat
area were decreased, then the gas could escape slower from the motor casing and more gas
will accumulate, so the pressure will be higher. However increasing pressure by decreasing
throat area will not affect thrust much, since thrust is directly proportional to throat area
by Equation 2.18.

Thus, the main way to control the pressure curve in a way to control thrust is by changing
the burn area of the grain.

2.4.4 Manipulating Pressure Curves

For a BATES grain, there are two factors at play when analyzing the burn area of the
grain over time. Since the grain burns from inside out, the inner circumference increases as
the grain burns. However, the length of the grain decreases as the grain burns as well. We
can come up with an equation for burn area as a function of the distance burned through,
using geometry.

Ab = π (d0 + 2x) (L0 − 2x) + 0.5π
(
D2 − (d0 + 2x)2

)
(2.25)

Where d0 is the initial port diameter, L0 is the initial grain length, D is the outer diameter
of the grain, and x is the distance burned through.

Since the burn rate is more or less constant during the steady-state phase of the burn,
the burn area vs time curve has the same shape as the burn area vs distance burned curve.
We can see, that if L0 is large, then the inner circumference increase of the grain is more
significant that the length decrease of the grain. As a result, for long grains, the burn area
tends to increase with time. On the flip side, for shorter grains, the length decrease is more
significant than the inner circumference increase, so for shorter grains, the burn area tends
to decrease with time.

If burn area (and thus pressure) tends to increase with time, the pressure curve is said to
be progressive, and if the pressure tends to decrease with time, the pressure curve is said to
be regressive. If the pressure tends to stay constant over time, the pressure curve is neutral.

Referring to Figure 2.6, we can see that thrust curves 2 and 3 are neutral, 1 is progressive,
and 4, 5 and 6 are regressive.
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If you want to increase the thrust of your motor, then you need to increase the burn
area of the grains. You can do this by using multiple grains or by increasing the length of
each grain. If you want to increase the delivered impulse of your motor, you either need to
increase the thrust or the burn time of the motor. You can increase the burn time of the
motor by increasing the inner diameter of the grain as the grain tends to burn to completion
due to increases of the inner circumference rather than decreases in the length of the grain.
By decreasing the inner diameter of the grains, you allow the grain to burn for a longer time
before it is consumed. However, decreasing the grain diameter too much can lead to erosive
burning concerns.

2.4.5 Erosive Burning

One very important factor that needs to be considered when selecting a grain geometry
is erosive burning. Erosive burning is an acceleration of the grain burn rate due to gas moving
parallel to the burn surface. If you have alcohol on a table and you blow parallel to the table
surface, the evaporation rate of the alcohol increases. This is a similar principle to erosive
burning.

This increase in burn rate leads to an increase in chamber pressure by Equation 2.22
and thus an increase in thrust by Equation 2.18. Erosive burning can be a good thing as it
results in a thrust increase, but it can also be detrimental.

If the mass flux (mass flow rate divided by port cross sectional area) gets too large, the
fast moving gas can break chunks off of the grains it is flowing parallel to. If chunks are
broken off, then the burning area suddenly increases, which leads to a sudden increase in
pressure, which leads to an increase in burn rate, which increases the pressure further. This
can cause the motor casing to explode.

2.5 Conclusion

In summary, the grain geometry (number of grains and dimensions of grains) is directly
related to chamber pressure by Equation 2.22. The chamber pressure is related to thrust by
Equation 2.18, and integrating thrust over time yields delivered impulse of the motor.

If you want to make the thrust curve more regressive, decrease the length of the grains or
split longer grains into multiple shorter grains. If you want to make the thrust curve more
progressive, increase the length of each grain or combine shorter grains into longer grains. If
you want to increase the thrust of the motor, you should increase the burn area by increasing
the number of grains used and/or increasing the length of the grain. If you want to increase
the delivered impulse of the motor you can increase the thrust of the motor, or decrease
the port area of the grain (which increases burn time), but make sure to consider erosive
burning.
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Chapter 3

Motor Design

Soon to come!
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Chapter 4

Nozzle Theory

4.1 Nozzle Basics

After the grains ignite in the combustion chamber you have high pressure, high tem-
perature gas that will be harnessed to produce thrust. You may be asking yourself, ”Why
can’t you poke a hole in the bottom of the combustion chamber and let that gas escape and
produce thrust? Why do you need a nozzle?”

The answer to this question is that you want to accelerate the gas to its fastest possible
speed to produce the most thrust, and having this gas escape through a hole will not accom-
plish this goal. In order to accelerate this gas to its fastest speeds, we need a nozzle with
a very specific geometry. In this chapter we will explore the physics behind how a nozzle
works.

4.2 Nozzle Geometry

A rocket nozzle, converging-diverging nozzle, or deLaval nozzle can be divided into
three parts: the converging section, the throat, and the diverging section. In the converging
section, the gas is subsonic (below Mach 1), at the throat, the gas is sonic (remember the
section on choked flow), and in the diverging section, the gas is supersonic.
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Figure 4.1: Nozzle Anatomy from hybridrocketengine.wordpress.com/

As the gas moves through the nozzle, thermal and pressure energy are converted to kinetic
energy. Thus, pressure and temperature decrease while gas velocity increases. Calculating
exact values of temperature, pressure, and velocity can be performed by utilizing isentropic
flow relations.
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Figure 4.2: Pressure, Temperature, and Velocity in a Nozzle from www.wikipedia.org

4.3 Expansion

4.3.1 Assumptions and Conservation Laws

Before going any further with the analysis of nozzle flows, we need to clearly state the
assumptions made in this section, as well as the conservation laws that we will use.

For ideal nozzle analysis, we assume that the flow is isentropic, the gas is an ideal gas,
the flow through the nozzle is steady (not time varying), the only combustion product is gas
(there are no solids or liquids), and flow is 1D (we assume the flow is only exiting the nozzle
axially). The isentropic assumption is a good one to make, as long as there are no shocks
in the nozzle. The steady-state assumption is valid for the steady-state part of the burn as
mentioned in Chapter 2. However, there will be solids in the combustion product, and we
will discuss how that slightly changes our analysis later, but for know we will assume that
the only product is gas.

The two major conservation laws that we will be using are conservation of mass (con-
tinuity) and conservation of energy. For a steady flow, which we assume, conservation of
mass through a nozzle states that all parts of the nozzle has the same mass rate through it.
Mathematically, this is

ρ1A1v1 = ρ2A2v1 (4.1)

Where, 1 and 2 are any two arbitrary points in the nozzle, and ρ is density of the gas
at that point, A is the cross-sectional area at that point, and v is the velocity of the gas at
that point.

Conservation of energy states that the stagnation enthalpy of a flow remains constant.
Enthalpy is the amount of energy available for heat transfer (either as heat or work), and
stagnation enthalpy is the enthalpy of the flow if it were brought to rest.

This principle follows a similar definition to stagnation pressure and temperature. The
enthalpy of a flow decreases as the flow velocity increases. This makes sense, since enthalpy is
a measure of the total thermal energy that a flow contains. So if a flow moves faster, it gains
kinetic energy which means it must be losing thermal energy, or enthalpy. Mathamatically,
this is

h0 = h+
v2

2
(4.2)

Where h0 is the stagnation enthalpy, h is the enthalpy of a flow at any arbitrary point
in the nozzle, and v is the velocity of the flow at that point.

If we apply the definition of specific heat

Cp =
∆h

∆T
(4.3)
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to Equation 4.2, we get Equation 2.8. Thus, equations 2.8 and 4.2 can both be thought
of as conservation of energy. In essence, they both say that the energy of a flow can either
be in the thermal energy of the flow, or the kinetic energy of the flow and that the total
energy remains constant.

4.3.2 Area-Mach Relation

The way that a nozzle accelerates a gas is by varying its cross-sectional area. For
subsonic flows you can accelerate the gases by decreasing the cross-sectional area of the
nozzle. Consider blowing air out of your mouth. Open you mouth widely and blow air.
Then purse your lips and blow again. In the second case, the air moves faster. This shows
that if you have subsonic flow and you decrease the cross-sectional area of the nozzle, the
flow speeds up.

However, you can only speed up a flow until Mach 1 by constricting it. This was touched
upon in the section on choked flow. If you want to accelerate a sonic flow past Mach 1 into
the supersonic regime, you need to expand the flow by increasing the cross-sectional area.
This is why nozzle initially converge, then diverge. The gas is accelerated in the converging
section until Mach 1, which occurs at the throat, then the diverging section accelerates the
gas past Mach 1.

Figure 4.3: Converging-Diverging Nozzle from nptel.ac.in/

This idea isn’t intuitive at all, since we don’t really have any daily experiences with
supersonic flows. The reason that sonic flows need to be expanded to accelerate them
further is the same reason that subsonic flows need to be constricted to accelerate them: the
continuity equation.

From the continuity equation (Equation 4.1), if area is decreased, then some combination
of increasing the density and the velocity must occur. When we are at low Mach numbers,
the density doesn’t change by much, so if you have subsonic flow the flow will speed up in
order for mass flow rate to be constant. This explains the converging section.

23



The diverging section is a bit trickier. If you were to increase the area, then some com-
bination of decreasing density and velocity must occur to keep the mass flow rate constant.
However, these two quantities move in opposite directions. As flow speeds up, the front
of a fluid element speeds away from the back, so the element will take up more space and
thus its density decreases. The Mach number of the flow determines how strong this inverse
correlation is. When flow is subsonic and a fluid element decelerates, the flow behind it
smoothly decelerates, since the deceleration of the element in front can be communicated
through pressure signals to the flow behind it. Since the deceleration is smooth, there is
only a mild density increase of the fluid. However, if flow is supersonic and a fluid element
decelerates, this information cannot be propagated upstream, since the flow is moving faster
than pressure waves propagate. This results in the flow behind the element decelerating very
quickly and compressing itself, which results in a sharp increase in density. Thus, if the Mach
number is one or greater, decreasing the flow will sharply increase the density. However, if
area is increased, the product of density and velocity must decrease, and the only way for
this relationship to be satisfied is if the velocity increases and the density decreases sharply.

In short, when flow is subsonic, density changes can be ignored, so if flow is constricted,
it must speed up. However, for supersonic flows, density changes are very large and in the
opposite direction to velocity changes, so if the flow is expanded, the flow must speed up in
order for continuity to be satisfied.

This can be quantitatively expressed in the Area-Mach Relationship

dA

A
= (M2 − 1)

dv

v
(4.4)

Where dA represents a change in cross-sectional area, dv represents a change in velocity,
and M is the Mach number of the flow.

It can be seen that if we have a subsonic flow, M < 1, and we decrease the cross-sectional
area, dA < 0, then the flow speeds up, dv > 0.

If we have a supersonic flow M > 1, and we increase the cross-sectional area, dA > 0,
then the flow speeds up, dv > 0.

Most interestingly, if we have a sonic flow, M = 1, we see that dA = 0. This means that
a sonic flow can only exist at a local minimum of cross-sectional area. This proves that sonic
flow can only exist at the throat of a nozzle, where cross-sectional area is at a minimum.

4.3.3 Expansion Ratio

Now, as promised, we will be taking a closer look at Equation 2.13. This equation is
very important when calculating the Mach number of gases at the exit of the nozzle.

If we start with the continuity equation with one term representing the mass flow rate
at some arbitrary point in the nozzle and the other term representing the mass flow rate at
the throat, they are, of course, equal.

ρvA = ρ∗v∗A∗ (4.5)

Where ρ∗ is the density at the throat of the nozzle, v∗ is the velocity of the gas at the
throat of the nozzle, which is Mach 1, and A∗ is the cross-sectional area of the throat. We
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can then apply isentropic flow relations to all quantities but the two areas and we are left
with the expression

A

A∗
=

(
γ + 1

2

)−γ+1
2γ−2

(
1 + γ−1

2
M2
) γ+1

2γ−2

M
(4.6)

With this isentropic relation and the others, if we know the stagnation pressure and
temperature (the pressure and temperature in the combustion chamber), we can calculate
the pressure, temperature, density, Mach number, and velocity of the flow at any point in
the nozzle if we know the cross-sectional area at that location and if the nozzle doesn’t have
any shocks in it. I cannot overemphasize how powerful of a tool this is.

We can also plot A
A∗ versus Mach number to gain some insight.

Figure 4.4: A
A∗ vs M from nakka-rocketry.net

As you can see on the graph, if you have flow under Mach 1, it can be sped up by
decreasing the cross-sectional area of the nozzle. The only place where the flow is sonic is
when A

A∗ = 1, which is at the throat. Then once sonic flow is achieved, the only way it
can be accelerated further is if the area is increased. We can also see that the larger the
cross-sectional area becomes, the faster the flow is.

This leads us to define a new quantity, the expansion ratio

ε =
Ae
A∗

(4.7)

Where ε is the expansion ratio and Ae is the area of the nozzle at the exit.
From Equation 4.6, we can see that the larger the expansion ratio, the faster we can

accelerate the gas to. Now this raises a question, if we can accelerate the flow to its highest
possible speeds by increasing the exit area of the nozzle, why don’t we just design a nozzle
with a massive expansion ratio to yield the fastest gas and most thrust?
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4.3.4 Underexpanded, Ideally Expanded, and Overexpanded Flows

From our isentropic flow relations, we know that the more we expand a flow, the faster
it becomes (Equation 4.6), and the faster a flow becomes, the lower the pressure becomes
(Equation 2.10). So, the more we expand a flow, the lower the pressure becomes. As the
supersonic flow exits the nozzle, we have three possible conditions, underexpanded, ideally
expanded, and overexpanded.

Underexpanded flows occur when the exit pressure of the gas is higher than the ambient
pressure. This occurs if we don’t expand the gas enough. When this occurs, the gas spreads
out as it exits the nozzle, since the higher pressure exhaust pushes outwards against the
lower pressure atmosphere. This is shown in the top image of Figure 4.5

Ideally expanded flows occur when the exit pressure of the gas is equal to the ambient
pressure. This means that we expanded the gas enough. When this occurs, the gas exits
straight out of the nozzle, since the gas and atmosphere are at the same pressure, so neither
pushes against each other. This is shown in the second image of Figure 4.5.

Overexpanded flows occur when the exit pressure of the gas is less than the ambient
pressure. This occurs if we expand the gas too much. When this occurs, as the gas exits the
nozzle, it gets compressed inwards due to the higher pressure atmosphere. This is shown in
the third image in Figure 4.5. If a flow gets expanded so much that it detaches from the
nozzle wall, it is referred to as grossly overexpanded. This is shown in the last image in
Figure 4.5.

Figure 4.5: Under, Ideally, and Overexpanded flows from www.wikipedia.org
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In overexpanded flows, the exhaust gets adiabatically compressed and decelerated, so
exhaust heats up (by Equation 2.11), and any unburned fuel gets reignited in a regular
pattern called Mach diamonds. The mechanism behind why the pattern repeats is alternating
oblique shocks and expansion fans, but don’t worry about that right now. They look super
cool. The image below shows Mach diamonds generated by the J58 engine (the engine of
the SR-71 Blackbird).

Figure 4.6: J58 Mach Diamonds from www.wikipedia.org

4.3.5 Optimal Thrust

Now we will talk about how to design a nozzle to optimize thrust. The formula for
thrust is given by Equation 2.16. In Chapter 2, we were concerned with maximizing thrust
by increasing the mass flow rate through the nozzle. Now we will be looking at maximizing
thrust by maximizing the velocity of the flow and optimally expanding the gas.

If we have underexpanded flow, that means that we could have potentially increased the
velocity of the gas by expanding it further, thus underexpanded flow doesn’t maximize thrust.
In overexpanded flow, since the ambient pressure is greater than the exhaust pressure, the
atmosphere pushes into the nozzle, decreasing thrust (corresponds to a negative pressure
thrust or a negative second term in the thrust equation). Thus, the configuration that
generates the most thrust is an ideally expanded nozzle, which expands the combustion
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gases to atmospheric pressure.
In the first stage of a rocket launch, the rocket has to ascend through the atmosphere into

space. As the rocket gains altitude, the ambient pressure decreases, so the nozzle will tend to
become underexpanded as it ascends. As a result, the nozzle is designed to be overexpanded
at sea level, so as it travels upwards, it becomes ideally expanded and then overexpanded.
For this reason, typical stage one engines are designed to be most efficient well above sea
level.

The first stage of a SpaceX Falcon 9 contains nine engines, so in total there are nine
nozzles with relatively small exit areas. In the second stage, there is one engine with a
nozzle with a very large exit area. Why is this?

The first stage is designed to operate in the atmosphere of Earth, and the nozzles are
designed to expand the flow to the atmospheric pressure. On the other hand, the second
stage is meant to operate in space, which is almost a vacuum. As a result, the stage two
nozzles need to expand the flow to a much, much lower pressure than the stage one engines.
This is why the stage two nozzles have a much larger exit area.

Figure 4.7: First and Second Stage Size Comparison from Everyday Astronaut

4.4 Thrust Revisited

Now we will take a closer look at Equations 2.17-2.19 and how they are derived. First,
we start with the general thrust equation, which is Equation 2.16. Then we can substitute
in equation 2.15 which gives the mass flow rate for choked flow.

Now we need an expression for the exit velocity of the flow as a function of the chamber
pressure and exit pressure, which are known quantities. We can use Equation 2.10 where we
will set p to the exit pressure, pe. This will allow us to calculate the Mach number of the
flow as a function of chamber pressure and exit pressure. Then from Equation 2.2 we can
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calculate the velocity of the flow as a function of the exit temperature, which is unknown as
well. However, we can then apply Equation 2.11 to express the exit temperature in terms of
the stagnation temperature. Now we have the exit velocity completely in terms of stagnation
temperature, pressure, and exit pressure.

ve =

√√√√2T0R

(
γ

γ − 1

)[
1−

(
pe
p0

) γ−1
γ

]
(4.8)

Now we can combine this equation and Equation 2.15 (mass flow rate) to get an equation
for thrust, which is Equation 2.17. I went over this derivation just because the thrust
equation is very important, so you would benefit from knowing where it comes from.

I will rewrite the thrust equation here for convenience.

Fthrust = p0A
∗

√√√√ 2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

[
1−

(
pe
p0

) γ−1
γ

]
+ (pe − pa)Ae (4.9)

Again, this can be simplified by defining the thrust coefficient.

Fthrust = p0A
∗Cf (4.10)

Where Cf is the thrust coefficient and is defined as

Cf =

√√√√ 2γ2

γ − 1

(
2

γ + 1

) γ+1
γ−1

[
1−

(
pe
p0

) γ−1
γ

]
+

(pe − pa)Ae
p0A∗

(4.11)

The thrust coefficient is a measure of how well the nozzle amplifies the thrust past the
amount if the gases were forced through a duct with the cross-sectional area of the throat.
This can be seen from the equation itself. The product of p0 and A∗ would just yield the force
if the pressure acted on just a throat sized area (essentially just poking a hole in the bottom
of the combustion chamber with a hole area of the throat area), so the thrust coefficient
gives the factor by which adding a nozzle will amplify the thrust past poking a hole.

Equation 4.9 also allows us to separate the factors that generate the thrust. If we decrease
the ratio pe/p0, then the thrust increases. This intuitively makes sense. If the chamber
pressure increases with respect to the exit pressure of the gas, the gas will be exiting at a
faster velocity, so more thrust is generated. Similarly, if we increase p0, then the density of
the gas will increase, so mass flow rate and thus thrust increases. If we increase A∗ and the
chamber pressure remains constant and we still have choked flow, the thrust increases since
the mass flow rate increases.

Equation 4.9 is also defined to experimentally determine the thrust coefficient of a nozzle.
We know that the larger the pressure and throat area, the greater the thrust, but the
coefficient Cf is a way to group together any non-ideal nozzle behavior such as two phase flow.
Under perfectly ideal conditions, Cf is defined by Equation 4.10, but the thrust coefficient
for a real nozzle will be less than this number, and measuring the thrust of the motor will
allow you to experimentally determine the thrust coefficient of the nozzle.
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4.5 C-Star

In this section we will look a bit more into the quantity c∗ which was introduced in
Chapter 2. It is defined as

c∗ =
p0A

∗

ṁ
=

√√√√√ RT0

γ
(

2
γ+1

) γ+1
γ−1

(4.12)

Since the equation for c∗ is a function only of R, T0, and γ, it is purely a property of fuel
combustion, and is independent of nozzle properties.

The units of c∗ are m/s. This is because c∗ is what the exit velocity of the gas would be
if there were just a hole poked in the combustion chamber and no nozzle. This can be seen
from the above equation, since the equation can be rearranged to

ṁc∗ = p0A
∗ (4.13)

Where both sides of the equation express the thrust of the motor without a nozzle.
Then it can be seen that c∗ will be the exit velocity of the gas. Since the mass flow rate
is proportional to throat area, c∗ will be independent of throat area. This means that no
matter what size hole you poke in the combustion chamber (assuming choked conditions),
the gas will always have the same velocity, c∗.

Looking at Equation 4.11 and knowing what c∗ physically represents, we can look at some
relationships. If we increase the specific gas constant by using a lighter gas, the characteristic
velocity increases. This makes sense. If we have the same thermal energy, a gas that is lighter
will have a larger exit velocity. If we choose a gas with a higher combustion temperature,
T0, then the gas will have more thermal energy, and thus will have a larger characteristic
velocity.

Since we know that Cf is a measure of how well the nozzle amplifies the thrust, we can
easily prove that

veff = Cfc
∗ (4.14)

Where veff is the effective exit velocity of the gas at the nozzle exit. Effective velocity
is the velocity of the gas at the exit point if all the thrust was generated by a change in
momentum of the gas. So effective velocity accounts for thrust generated by a change in
momentum and the pressure thrust. So

Fthrust = ṁveff (4.15)

4.6 Normal Shocks

A normal shock is a discontinuity in a flow across which pressure, temperature, and
density increase, and velocity decreases. For our purposes, a normal shock occurs in super-
sonic flow through a nozzle when pressure needs to equalize. The normal shock is always
perpendicular to the incoming direction of flow (hence the name ”normal”). This is a very
vague and abstract definition, but we will consider examples in the next section.
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A normal shock, like any shock, is not isentropic. If you have flow through a nozzle and
there is a shock wave inside the nozzle, you cannot use the isentropic flow relation to get
the Mach number or any property of the flow after the shock. The most important thing
to remember about normal shocks, is that the flow immediate downstream of the shock
is ALWAYS subsonic. This is why we never want to have normal shocks inside the nozzle.
Having a normal shock inside of a nozzle is detrimental to the thrust generated by the engine.

Since the flow is decelerated across the shock, the temperature and pressure of the flow
must rise. There are a set of equations that can be used to calculate flow parameters across
a normal shock, and I will present them without derivation here, but they are derived by
creating a control volume across the normal shock.

M ′ =

√
(γ − 1)M2 + 2

2γM2 − (γ − 1)
(4.16)

p′

p
=

2γM2 − (γ − 1)

γ + 1
(4.17)

ρ′

ρ
=

(γ + 1)M2

(γ − 1)M2 + 2
(4.18)

T ′

T
=

[2γM2 − (γ − 1)][(γ − 1)M2 + 2]

(γ + 1)M2 + 2
(4.19)

p′0
p0

=

[
(γ + 1)M2

(γ − 1)M2 + 2

] γ
γ−1
[

γ + 1

2γM2 − (γ − 1)

] 1
γ−1

(4.20)

T ′0
T0

= 1 (4.21)

Where the quantities with the prime symbol are the quantities after the normal shock
and the quantities without a prime are the quantities before the normal shock.

The trend that can be seen is that the faster the flow is before the normal shock, the
greater each of the quantities change. This implies that the faster the flow is initially, the
stronger the shock. Finally, one idea of interest is why the stagnation temperature of the
flow does not decrease or even change at all. While a normal shock is not isentropic, it is still
adiabatic, which means that no heat is added or removed during the process. This ensures
that the stagnation temperature remains unchanged after the shock.

4.7 Nozzle Flow Cases

In this section we will look at all possible cases of nozzle flow, from no flow at all to
fully supersonic ideally-expanded flow. For this analysis, we will be using the graphic shown
below. It uses a slightly different naming convention. First of all, ignore the valve to the
right of the image. In the combustion chamber the graphic uses pt and Tt. These simply
mean total pressure and total temperature. They are the same as stagnation pressure and
temperature.
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At the throat of the nozzle it says pc, which means choked pressure. This is the pressure
at the throat of the nozzle when choked flow is achieved. It can be calculated through
Equation 2.10 by setting M=1, since choked flow occurs when flow is sonic at the throat and
by solving for p which would be pc. So if the pressure at the throat is ever pc, then you know
that flow through the nozzle is choked. Like usual, pe is the pressure of the gas at its exit,
and pb is the back pressure, or ambient pressure that the nozzle is venting gas into.

The plot in the graphic shows pressure vs distance in the nozzle. However, the pressure
it plots is normalized by the chamber pressure. At the rightmost portion of the graph, the
pressure always has to be equal to pb since the pressure must equilibriate. In the following
subsections, we will explore how flow through the nozzle evolves as the ration pb/pt is lowered.

Figure 4.8: Nozzle Flow Cases from aerospaceengineeringblog.com

4.7.1 Case 1: No Flow

The easiest case of nozzle flow is no flow. This occurs when the ratio of pb/pt=1. This
means that the chamber pressure is equal to atmospheric pressure. Since there is no pressure
differential, there is no flow through the nozzle. This corresponds to line 1 on the graph.
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4.7.2 Case 2: Fully Subsonic Flow

If we lower the ratio pb/pt either by increasing the chamber pressure or by decreasing
the back pressure, we get subsonic flow through the nozzle. In this case, the flow increases
in velocity in the converging section, then decreases in velocity in the diverging section.
This happens because when you constrict a subsonic flow, it speeds up, and if you expand
a subsonic flow it slows down. By Bernoulli’s principle, the pressure of the gas in the nozzle
decreases in the converging section, and increases in the diverging section. At the exit, the
pressure of the flow is equal to the back pressure.

In this case, the highest velocity and lowest pressure occurs at the throat. This corre-
sponds to line 2 on the graph.

4.7.3 Case 3: Choked Subsonic Flow

If we lower the ratio pb/pt further, eventually we will get to the point that the flow
is accelerated in the converging section such that it is Mach 1 at the throat. However, this
pressure ratio will yield an exit pressure much greater than pc. Since the gas pressure in the
nozzle must equalize with atmospheric pressure, the pressure of the gas must increase in the
diverging section of the graph. Thus the flow decelerates, and by Bernoulli’s principle, the
pressure increases. This case is given by line 3 on the graph.

4.7.4 Case 4: Normal Shock in Nozzle

If you continue to decrease the ratio pb/pt, the pressure curve in the converging section
will always look the same as in case 3. This is because of the same phenomena which
we have looked at before where pressure information cannot be transmitted across a sonic
or supersonic region. Let’s consider this a bit more in-depth. Imagine we lower the ratio
by decreasing the back-pressure. If we do that, the information that the back pressure is
decreased cannot be sent across the throat. If we decrease the pressure ratio by increasing
the chamber pressure, the pressure in the converging section will increase, but the shape of
the pressure curve in the converging section will look the same, since it plots the pressure
normalized by the chamber pressure.

So if you continue to decrease the pressure ratio beyond Case 3, supersonic flow starts
to appear in the diverging section. This happens because the pressure differential increases
further, so flow starts to get accelerated through the diverging section. However, like the
previous case, the gas pressure needs to equalize with the atmospheric pressure. At this
point, the flow doesn’t have enough distance (across the rest of the nozzle) to isentropically
decelerate to increase the pressure. As a result, a normal shock forms in order to sharply
increase the pressure. Since the flow after the normal shock is subsonic, and in the diverging
section, the flow continues to decelerate and increase its pressure until the exit.

If we continue to decrease the pressure ratio further, the normal shock moves from around
the throat down the nozzle. Since, the flow will have more room to accelerate if the shock
moves down the diverging section of the nozzle.

The condition of a normal shock in the nozzle is given by line 4.
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4.7.5 Case 5: Normal Shock at Nozzle Exit

As we continue to lower the pressure ratio, the normal shock will eventually occur at
the nozzle exit plane. This occurs for the same reason as in case 4. The pressure of the gas
in the nozzle is well below the atmospheric pressure, so a normal shock is needed to increase
the pressure of the flow. In this case, flow is supersonic throughout the diverging section of
the nozzle except at the exit. This case is shown by line 5. Flow will remain to be supersonic
through the entire diverging section for the remaining cases.

4.7.6 Case 6: Overexpanded

If we continue to lower the pressure ratio (see a trend here), the flow continues to
be fully supersonic through the entire diverging section, and the pressure of the gas at the
exit is still lower than the ambient pressure. However, this difference isn’t as large as the
pressure difference in case 5, so a normal shock would raise the pressure too much. As a
result, a weaker oblique shock forms outside of the nozzle to attempt to equalize the pressure,
however, this shock will raise the pressure a bit too much, so the flow then goes through an
expansion fan to lower the pressure again. This explains the oscillating line at the end of
line 6. However, as shown in the image below, the alternating oblique shocks and expansion
fans are a bit more complicated than we covered. The Mach disks in red are the same Mach
diamonds that that were seen in the J58 engine.

Figure 4.9: Overexpanded Nozzle Flow from aerospaceengineeringblog.com

4.7.7 Case 7: Ideally Expanded

If the pressure ratio is lowered further, we will eventually get to the case where the
pressure of the gas is equal to the back pressure (ambient pressure). This case is the ideal
one, where thrust is maximized. In this case, no shocks are formed. This is given by line 7.
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4.7.8 Case 8: Underexpanded

If the pressure ratio is lowered further from the ideal conditions, then the pressure of
the gas will be greater than the ambient pressure. Thus, the pressure of the gas needs to
decrease. As a result, an expansion fan forms outside of the nozzle to decrease the pressure.
However, again, it overshoots, so an oblique shock forms after the expansion fan. This
accounts for the oscillating line at the end of line 8.

The pressure ratio or ranges of pressure ratios can be calculated for cases 1, 2, 3, 6, 7,
and 8 by using isentropic flow relations.

4.8 Oblique Shocks

4.8.1 Basics

This section and the section on expansion fans are only important if you want to design
a nozzle using the Method of Characteristics.

An oblique shock wave is another type of shock. Like a normal shock, flow passing
though an oblique shock is not isentropic. Also in an oblique shock, flow is decelerated and
the pressure and temperature increase. However, it differs from a normal shock in that the
flow that crosses an oblique shock can still be supersonic, and usually is. This type of shock
occurs when supersonic flow has to navigate an object in its flow. This shock is always
slanted with respect to the incoming flow (hence the name oblique), and is always touching
the object that the flow is navigating (which is why it is also referred to as an attached
shock).

When any flow travels past an object, the streamlines try to align parallel to the object.
Imagine subsonic flow trying to navigate a wedge placed in the flow. Since the flow is
subsonic, the upstream flow is ”warned” that there is an obstacle in the way, so it smoothly
turns in order to remain flowing parallel to the surface of the wedge.

However, in supersonic flow, the flow upstream isn’t ”warned” about the obstacle. All
the pressure signals that are trying to warn the upstream flow interfere constructively with
each other to form an oblique shock. As soon as the flow interacts with the oblique shock, it
suddenly knows that there is an obstacle in the way, so it sharply turns in order to remain
flowing parallel to the surface of the wedge, as shown in Figure 4.10. A general idea that
should be remembered is that streamlines always turns towards the oblique shock.
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Figure 4.10: Oblique Shock from wikiwand.com

This is the same phenomena that causes oblique shocks to form with fighter jets. The jet
is moving through the air at supersonic speeds, so the air upstream isn’t warned of the jet’s
approach, but when the air gets close enough, it sharply turns in order to flow parallel to the
surface of the nose of the plane. The point at which the flow suddenly turns is the oblique
shock. Oblique shocks are generated whenever there is a large change in cross sectional area,
so a fighter jet generates oblique shocks at its nose, wings, and elevators.

Figure 4.11: Oblique Shock due to Jet from www.wikipedia.org
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4.8.2 Theta-Beta-Mach Relationship

There is a mathematical relationship between the incoming flow’s Mach number, its turn
angle (θ), and the angle of the oblique shock with respect to the incoming streamlines (β).
This relationship is known as the theta-beta-Mach relationship. It is given by

tan(θ) = 2cot(β)
M2sin2(β)− 1

M2(γ + cos(2β)) + 2
(4.22)

This is a highly convoluted formula, so it is easier to get an intuition by looking at a
graphical representation of this formula.

Figure 4.12: Theta-Beta-Mach Graph from flowsquare.com

A few relationships can be extracted from this graphic. If you have a wedge in a supersonic
flow and the flow speeds up, then the Mach angle (β) decreases.

There exists a maximum angle that flow can be turned though by an oblique shock. This
can be see by imagining a horizontal line that passes over the curve in the graph with no
intersection. This means that there is no oblique shock solution for that turn angle. This
doesn’t mean that there is no shock present. There is a bow shock. This shock is not
attached to the wedge, and can only be calculated by using Computational Fluid Dynamics
simulations.

At each turn angle where an oblique shock exists, there are usually two solutions. This
can be seen by imagining a horizontal line that intersects the curve. Most lines that are drawn
intersect the curve twice. These two solutions correspond to a weak oblique shock at the
lower angle, where flow is still supersonic after the shock, and a strong oblique shock which
corresponds to the larger shock angle, where flow is subsonic after the shock. Experimentally,
the weak shock is almost always the one which occurs.
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4.8.3 Oblique Shock Relations

Just like normal shocks, there exist a set of formulas that can be used to quantify how
the properties of a flow change as they cross an oblique shock. They will be presented here
without derivation.

p′

p
= 1 +

2γ

γ + 1
(M2sin2(β)− 1) (4.23)

ρ′

ρ
=

(γ + 1)M2sin2(β)

(γ − 1)M2sin2(β) + 2
(4.24)

T ′

T
= 1 +

p′

p
(4.25)

M ′ =
1

sin(β − θ)

√
1 + γ−1

2
M2sin2(β)

γM2sin2(β)− γ−1
2

(4.26)

Where the quantities with primes are the properties after the shock.

4.8.4 Shock Reflection and Cancellation

An oblique shock that interacts with a wall can get reflected, and in a special case,
gets cancelled and no reflection occurs.

To understand shock reflection, lets consider an example. Imagine a situation depicted
in Figure 4.13. There is a wedge in a supersonic flow, so it generates an oblique shock. Now
assume that this oblique shock intersects a surface like at the bottom of the picture. We
know that the flow will turn towards the oblique shock as stated before. If we consider a
streamline near the bottom surface, it is initially moving parallel to the surface. However,
once it interacts with the shock generated by the wedge, it will turn away from the shock
and turn into the surface. However, flow tries to move parallel to surfaces. The flow after
the first shock is still moving supersonic, so it doesn’t know that the surface is there, since
the pressure signals bunch up into what becomes the reflected shock. This reflected shock
then turns the flow back to being parallel with the surface.

One important thing to keep in mind is that the angle of the reflected shock is not the
same as the angle of the incident shock. We know that the flow slows down after passing
through the incident shock, and we know that the turn angle of the reflected shock must
be equal to the turn angle of the incident shock to keep flow parallel to the surface. By
the theta-beta-Mach relation, if the two flows have the same turn angles and different Mach
numbers, then they must have different shock angles.
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Figure 4.13: Reflected Oblique Shock from http://www.aerodynamics4students.com

Shock cancellation occurs when the surface that the shock is incident upon is inclined
with respect to the horizontal at a specific angle. For this we will consider a similar example
using Figure 4.14.

The reason that a reflected shock appear is because after the incident shock, the flow is
not parallel to the surface. However, if the surface is inclined downwards by the same angle
that the incident shock turns the flow by, no shock will appear. This is because after the
incident shock, flow is already going to be parallel to the surface, so the flow does not need
to be turned by a reflected shock. This idea is very, very important and is used to design
nozzles using the method of characteristics.

Figure 4.14: Cancelled Oblique Shock from http://www.aerodynamics4students.com

Oblique shocks will never exist inside of a nozzle, however they share many properties
with expansion fans, which do exist inside nozzle, so it’s important to understand how they
work and their properties (like reflection, and cancellation).
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4.9 Expansion Fans

Expansion Fans can be thought of as the opposite of an oblique shock in a way. Oblique
shocks occur when supersonic flow has to navigate a concave object. On the other hand,
expansion fans occur when supersonic flow is turned about a convex corner. Flow turns away
from the expansion wave as it crosses the wave unlike oblique shocks where flow is turned
towards the shock. We will look at an example to explore why this happens.

As we have seen in the last section, flow tries to remain parallel to the surfaces they
flow over. When supersonic flow approaches a corner as shown in the image below, it tries
to remain parallel to the flow. But in this case, flow isn’t being compressed by a wedge or
concave corner, it is being expanded by a convex corner. As a result, the flow speeds up and
turns isentropically.

Figure 4.15: Expansion Fan from www.wikipedia.org

However, the flow isn’t turned by a single expansion wave, as that would violate the
second law of thermodynamics. Instead, the flow is turned by an infinite number of expansion
waves, also known as an expansion fan. Each individual expansion wave turns the flow by
an infinitesimal amount.

The more that a flow is turned by an expansion fan, the faster the flow becomes. This
idea can be quantitatively expressed by the Prandtl-Meyer Function. This function tells you
how much a sonic (M=1) flow has to turn in order to reach a certain Mach number.

ν(M) =

√
γ + 1

γ − 1
arctan

√
γ − 1

γ + 1
(M2 − 1)− arctan

√
M2 − 1 (4.27)

So if you have a sonic flow and you want to see how much you have to turn the flow to
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accelerate it to Mach 2, you just have to plug in 2 for M and evaluate to get the turn angle
necessary.

If you have an incoming flow that is greater than Mach 1, you can still calculate the turn
angle needed for it to reach a certain Mach number. You just have to use the formula

ν(M2) = ν(M1) + θ (4.28)

It is possible for an expansion fan to not be able to turn a flow past a certain angle. This
is similar to how an oblique shock has a maximum turn angle for certain flows. To get the
maximum turn angle for an expansion fan, you need to plug in infinity for M.

Expansion waves are reflected by surfaces just like how oblique shocks are. The reflected
expansion wave is there to turn the flow back to being parallel to a surface. This is easy
to calculate if you only have one expansion wave, but if you have an expansion fan being
reflected, the reflected expansion waves are bent by the incident waves. This is not easy to
calculate, but we will consider how to do this when using Method of Characteristics.

Figure 4.16: Expansion Fan Reflection from Université de Liège: Aerothermodynamics
of High Speed Flows

Similar to oblique shocks, expansion waves can be cancelled by having the surface slanted
at the same angle and in the same direction that the incident expansion wave turns the flow.
This idea is very important when designing a nozzle using Method of Characteristics.

4.10 Two-Phase Flow

Up to this point, we assumed that the combustion product is only a gas. In real motors
this is not the case. There are small solid particle in the exhaust which comprise the smoke
coming out of the nozzle. These solid particles create a few problems.

Firstly, since they are solid, they cannot be expanded like a gas can. Two other phe-
nomena, known as thermal and velocity lag, also affect solid particles. Thermal lag refers
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to the fact that the solid particles do not transfer heat to the gas as quickly as gas would
transfer heat to other gas. This results in thermal energy being thrown out of the engine
without it being used to heat up and accelerate the gas. Velocity lag refers to the fact that
solid particles cannot be accelerated at the same rate that a gas can. As a result, the solid
particles that exit the nozzle move slower than the gas exiting the nozzle.

These factors can be accounted for by generating a new specific ”gas” constant and a
new ratio of specific heats. The new specific ”gas” constant is defined as the universal gas
constant divided by the molar mass of the gas/solid mixture. Calculating the adjusted ratio
of specific heats is a bit more complicated and is shown in its entirety on nakka-rocketry.net.

4.11 Conclusion

The nozzle accelerates the gas from the combustion chamber simply by varying the
cross-sectional area that the gas flows through. To maximize thrust, the nozzle should
expand the gas from chamber pressure to atmospheric pressure.
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Chapter 5

Nozzle Design

A nozzle is the most efficient when it expands the gas from the chamber pressure
to atmospheric pressure. This ideal expansion ratio can be calculated via isentropic flow
relations. You must already know what chamber pressure and throat area you will use. This
was covered in Chapter 3. First use Equation 2.10 where p0 will be the chamber pressure and
p will be set to the ambient pressure. From this, you can extract what the Mach number the
flow should be at the exit. Then you use Equation 2.13 and plug in the exit Mach number
for M and solve for A, which will yield what exit area your nozzle should have. To start
designing the nozzle, you must know the throat area and the exit area (which was covered
in Chapter 3).

5.1 Conical Nozzle

A conical nozzle is the easiest to design and manufacture. To design the nozzle contour,
you draw two straight lines. One forms the converging section, and one becomes the diverging
section as shown below.

Figure 5.1: Conical Nozzle from www.researchgate.net/

43



The final nozzle cross section should look like Figure 5.1, but the converging and diverging
section should not join at a point. This sharp corner could cause flow separation from the
wall of the nozzle leading to a shock, drastically lowering performance. This corner should
be filleted.

Your throat area and exit area are fixed, but you have freedom to choose the converging
half-angle (β) and the diverging half-angle (α). The problem with conical nozzles is that
as gas flows out of the nozzle, it isnt directed purely axially. It has some exit angle. This
angle results in thrust losses. If you want to decreases these losses, you need to decrease the
divergent half-angle in order for your flow to exit more axially. However, by decreasing the
divergent half-angle, the nozzle has to be longer, and thus heavier, so these two effects have
to be balanced.

Figure 5.2: Conical Nozzle Thrust Losses from thermopedia.com

Typically conical nozzles are designed with a convergent half angle of 30 degrees and a
divergent half-angle of 15 degrees.

5.2 Method of Characteristics

In a nozzle, designing the converging section isn’t too difficult. You just need to create
the converging section without any sharp turns that could cause flow detachment. The
diverging section is much harder to design, due to the expansion fan generated when the
flow initially expands at the throat.

Method of Characteristics (MOC) is a way of designing the most efficient diverging section
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of a nozzle. No other shaped nozzle will result in more thrust. Since flow is sonic at the
throat and the diverging section is essentially a convex corner, when flow moves past the
throat, expansion waves are generated. In a conical nozzle, these expansion waves reflect
off of the wall of the nozzle and into the exhaust. This results in a loss in thrust. A nozzle
designed by MOC has the walls contoured in a way that they cancel the expansion waves.
This nozzle also directs flow to be perfectly axial at exit unlike conical nozzles.

5.2.1 Mach Wave and Expansion Wave Reflection

A Mach wave is the small pressure wave than an object gives off to signal its presence
in a flow. When flow is supersonic, these Mach waves stack up to create shockwaves or
expansion waves depending on what type of corner the flow is turned by. When no object is
placed in the flow, this can be modeled as an infinitely thin object being placed in the flow.
The angle of the Mach waves produced is given by

µ = arcsin

(
1

M

)
(5.1)

This can be proven by plugging in θ = 0 into the theta-beta-Mach relationship. When
you have a supersonic flow, two Mach lines are generated: one with angle µ with respect
to the flow direction, and one with angle −µ with respect to the flow direction. This is the
same thing that happens with oblique shocks as well (since oblique shocks are a form of
Mach wave). When a wedge is placed in a supersonic flow, two Mach waves are generated
symmetrically about the wedge. One going upwards, and one going downwards. Oblique
shocks and expansion fans are a form of Mach waves.

If we look back at Figure 4.15 we can use Equation 5.1 to calculate the angles of the
expansion fan. If we use the formula we get

µ1 = arcsin

(
1

M1

)
(5.2)

and

µ2 = arcsin

(
1

M2

)
(5.3)

These angles are defined with respect to the direction of the incoming flow, so µ1 is
defined with respect to the horizontal, and µ2 is measured with respect to to θ.

5.2.2 MOC Theory

Method of Characteristics is a way of determining properties of a flow by making use
of characteristic lines. Characteristic lines are Mach lines of a flow. From every point in
the supersonic flow, there are two Mach lines that pass through that point, a left running
characteristic line and a right running characteristic line. An observer on a left running
characteristic line looking downstream will see the line drift to the left, and an observer on
a right running characteristic will see the line appear to drift to the right. In the graphic
below, ignore the S+ and S-.
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Figure 5.3: Characteristic Lines from Université de Liège Aerothermodynamics of
High Speed Flows

The left running characteristic line has an angle of θ + µ with respect to the horizontal,
where θ is the angle that the flow is travelling in with respect to the horizontal, and µ is the
local Mach angle. The right running characteristic line has an angle of θ − µ with respect
to the horizontal.

On each characteristic line, a certain quantity remains constant.
For a right running characteristic, the following quantity remains constant

CR = θ + ν(M) (5.4)

For a left running characteristic, the following quantity remains constant

CL = θ − ν(M) (5.5)

Where ν(M) is the Prandtl-Meyer (PM) angle of the flow at that point, and θ is the
angle the flow makes with the horizontal at that point.

Thus, if we are looking at the intersection point of a right running and left running
characteristic line, we can determine the angle of the flow, and the Mach number of the flow
(since we know the PM angle), by solving Equations 5.4 and 5.5 simultaneously.

At the intersection point of a right and left running characteristic, the flow angle and the
PM angle are given by the following two equations

θ =
CL+ CR

2
(5.6)

ν(M) =
CL− CR

2
(5.7)

When performing this method, we can analyze the top half of the nozzle contour, since
the nozzle is symmetric. The point of this method is to plot the trajectory of the expansion
waves and then design the slope of the nozzle wall with the same slant angle as the angle
that the flow is turned by in order to cancel out the incident expansion wave. We have to use
MOC, because as expansion waves interact with each other, they bend, and this phenomena
must be accounted for via MOC.
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Figure 5.4: MOC Example from Université de Liège Aerothermodynamics of High
Speed Flows

In this method, the maximum wall angle, θmax occurs at the throat of the nozzle. The
expansion waves generated by the throat look like they are reflected off of the center-line.
However, these reflected waves are the expansion waves generated by the other half of the
nozzle. The expansion waves generated by the throat are right-running characteristic lines
and the reflected expansion waves are left-running characteristics.

At point c in Figure 5.4, the flow has the design Mach number, Me (which can be
calculated using A∗ and Ae) and flow angle θ = 0, since flow is purely axial at the nozzle
exit. The flow at point b has θ = 0, since it is on the center-line of the nozzle. Since point
b is on the same characteristic line as point c and they have the same flow angle, they also
have the same Mach number.

Flow is initially turned by θmax as it passes through the throat. Then it is turned back
by θmax in order to flow axially though the nozzle exit. Thus, the flow is turned in total by
2θmax in the nozzle. Since the flow will be turned by ν(Me) in total, we can see that

θmax =
ν(Me)

2
(5.8)

We can choose the number of characteristic lines originating from the throat of the nozzle.
The more characteristic lines we choose, the more accurate our designed nozzle will be. Each
characteristic line will turn the flow by ∆θ = θmax

n
if we have n characteristic lines.

On the jth characteristic line coming from the throat, we know that the turn angle will
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be

θj = j∆θ (5.9)

Since the flow is initially sonic, we know that on the jth characteristic line the PM angle
is

ν(M)j = j∆θ (5.10)

Since the PM angle is the amount that flow had to turn to reach the Mach number it is
currently at, and we know how much the flow did turn already, we know that the turn angle
must be equal to the PM angle.

Since we know the turn angle and PM angle for each characteristic line, we know the left
and right characteristic constants for each of the characteristic lines.

(CL)j = 0 (5.11)

(CR)j = 2θj (5.12)

Since all of the characteristic lines forming from the throat are right running, they have
slopes

mj = tan(θj − µj) = tan(θj − arcsin(1/Mj)) (5.13)

If you know the throat radius (which you do), you can plot the incident expansion waves
since they all pass through the point (0,Rt) (where Rt is the radius of the throat) and have
slopes as shown in Equation 5.13.
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Figure 5.5: Incident Expansion Waves from Université de Liège Aerothermodynamics
of High Speed Flows

Now that we have the incident expansion waves, we have to plot the ”reflected” expansion
waves and how they interact with the incident waves.

We know intuitively that on the center-line the flow angle should be zero degrees (since
flow will be purely axial). This is true for all of the nodes on the center-line but the first. We
assume that the flow angle at the first node is a small angle (∆θ), otherwise, we wouldn’t be
able to start the algorithm. Since we know the turn angle and PM angle at node 1 (since we
know CR), we can calculate the left running characteristic constant and then its intersection
node with the characteristic line passing from 1 to 9. We know the characteristic constants
of both characteristic lines at this intersection node, so we can calculate the turn angle, PM
angle, and Mach number at this intersection node, which is node 2 in Figure 5.6.

Now we can create a new characteristic line coming from node 2. Since we know the
properties at node 2, we can get the slope and the left-running characteristic constant of
this new line (from 2 to 3). Then we can get the information at node 3 since we know the
characteristic constant of the characteristic line from node 1 to node 16. We can repeat
this process until we find where the reflected characteristic line intersects the last incident
characteristic line. Now we are ready to calculate the first coordinate of the wall.

Since we know the Mach number and and turn angle at node 7, we know the slope of the
left running characteristic line from node 7 to the first wall node. The wall can be modeled
as a straight line with slope θmax starting at the throat. The intersection of these two lines
is the coordinate of the first wall node. The mach number and flow angle are the same at
node 7 and the first wall node (node 8).

Figure 5.6: First Reflected Characteristic Line from Université de Liège Aerothermo-
dynamics of High Speed Flows

To get the second reflected characteristic, we follow the same procedure that we used to
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get the trajectory of the first characteristic line. However, this time the flow deflection angle
at node 9 will be 0, since it is on the center-line. This means that the PM angle at node 9 is
the same as the right-running characteristic constant from the throat to node 9. This time
when we calculate the coordinates of the wall point, we extend a line with angle θ8 from
point 8. This ensures that the angle of the flow at the wall, which is θ8, is the same as the
angle of the wall, so the reflected expansion wave is cancelled.

Figure 5.7: First Two Reflected Characteristic Lines from Université de Liège Aerother-
modynamics of High Speed Flows

We then follow this same procedure to calculate the rest of the wall coordinates. When
we finish, we will get a plot shown in Figure 5.8.

Figure 5.8: Completeted MOC Nozzle Contour from Université de Liège Aerothermo-
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dynamics of High Speed Flows

5.2.3 Designing MOC Nozzle in Practice

Designing a nozzle like this in practice would involve writing a script in Matlab. You
can use any language, but it is easiest to do so in Matlab.

The four parameters that this script takes in are the throat radius, the exit Mach number,
the ratio of specific heats of the gas, and the number of characteristic lines that will be used.

When I made this program, I created four helper functions. The first was a PM function,
where you inputted the Mach number of the flow and the ratio of specific heats and it
outputted the PM angle. The second was an inverse PM function, where you input the PM
angle of a flow and it tells you the Mach number of the flow. The third was a Mach angle
function, where you inputted the Mach number of a flow and it would tell you its Mach
angle. The last function was the most complex. If you inputted the maximum turn angle of
the flow θmax and the number of characteristic lines n, it would output six vectors: a vector
of the PM angles at each node, a vector of the right running characteristic constants at each
node, a vector of the left running characteristic constants at each node, a vector of the flow
angles, θ at each node, a vector of the Mach numbers at each node, and a vector of the Mach
angles at each node.

The general structure of the overall code is firstly calculating the maximum wall angle,
by using Equation 5.8. Then it calculates how many nodes there will be depending on the
number of characteristic lines that will be used. The formula is

nodes =
n(n+ 1)

2
+ n (5.14)

From there, the code uses the fourth function mentioned above to calculate the PM angles,
the left and right running characteristic constants, the flow angles, the Mach numbers, and
Mach angles. All of these are calculated without knowing the coordinates of the nodes.
Finally, the coordinates of the nodes and walls are calculated, the characteristic lines are
plotted, and the coordinates of the wall are plotted and connected to make the nozzle contour.

In this section I will go into detail as to how the fourth function works and how the
coordinates of the nodes and wall are are calculated. These two are the hardest parts of the
program.

The program calculates all the nodal properties by analyzing the nodes in numerical
order as shown in Figure 5.8. So first it calculates the properties of node 1, then node 2,
and so on.

We know that for the right running characteristics from the throat to 1, from the throat
to 9, and so on until the throat to 34, the characteristic constant is 2θj (from previous section
on theory). When we consider node 1, we assume that the flow angle at node 1 is ∆θ, or
else the method won’t start. Since we know its flow angle and its CR, we can figure out its
PM angle, which is also ∆θ. Now we can calculate CL for the line 1-2, which is 0. Since
node 2 is the intersection between two characteristic lines than we know the constants of,
we can figure out all the properties at node 2 by using Equations 5.6 and 5.7. By using this
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same procedure, we can calculate the values at the rest of the nodes on the first reflected
characteristic.

Now we need to calculate the properties at the first wall node. It can be shown that the
flow angle at node 7 is θmax (by Equation 5.9), which also must be the flow angle at the first
wall node, since the wall has angle θmax from point 1 to 8. Since nodes 7 and 8 are on the
same characteristic line and they have the same flow angle, all their properties can be shown
to be identical. This is also true for all wall nodes. The data at a wall node is exactly the
same as the data at the previous node.

For all of the center-line nodes except for the first one, the flow angle is zero. Since they
are all on the same right running characteristics as the node diagonally to the left and up, we
know that for the center-line nodes ν(M) = CR where CR is the right-running characteristic
constant for the characteristic line coming from the node diagonally up and to the left. For
example, if we are analyzing node 9 in Figure 5.6, its right-running characteristic constant
will be equal to node 2’s CR.

Now that we know the flow angle and the PM angle at the center-line node, we can
determine the rest of the properties at these nodes such as Mach number and Mach angle
through the helper function. Then we can calculate their left running characteristic constant
(which will be 2ν(M)). Now we can calculate all the values at the rest of the interior nodes.
For example, to calculate the data at node 10, we use CL from node 9 and CR from node 3.
We repeat this process until we calculate the data at each node.

Now that we have the data at each of the nodes, we just need to find the location of each
of the nodes. We know one coordinate already (0,Rt), which is the location of the throat.
We can then use equation 5.13 to calculate the slopes of the incident characteristic lines.
Their intersection points with the x-axis gives the coordinates of the center-line nodes. We
can use the following equation to calculate the slopes of the left running characteristics from
the jth node

mj = tan(θj + µj) (5.15)

We will go over a quick example on how to use this formula. We already know the slopes
of the incident characteristic lines and can develop an equation for these lines. To calculate
the coordinates of node 2, we need to find the intersection point between the line from the
throat to node 9 (which we know) and a the left-running characteristic from node 1. So we
just need to get an equation for the latter. We know the coordinates of node 1, so this serves
as our point, and we can use Equation 5.15 to get the slope of the line extending from node
1. Now we solve a system of equations to get the intersection point that becomes node 2.
Now we use the coordinates of node 2 as the point and use the data at node 2 and Equation
5.15 to get the slope of the refracted left characteristic. Then again we solve the system of
equations to get the coordinates at node 3. We repeat this process to get the coordinates of
all the interior nodes.

To get the coordinates of the first wall node, we find the intersection point of the left
characteristic line from node 7 and a line with angle θmax from the point (0,Rt). To get the
coordinates of the second wall node (node 15), we find the intersection point between the
left characteristic line from node 14 and a line from the first wall point (node 8), with angle
θ8. This is to ensure that the slope of the wall is the same as the flow angle, so the reflected
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Mach line is cancelled by the wall.
In this section, I used a numbering convention assuming that 7 characteristic lines were

chosen, since they matched the figures shown. In the program, the number of characteristic
lines will be an input and the program must account for this.

Although a MOC nozzle is the most efficient nozzle at generating thrust, it tends to be
very long and thus heavy. Two solutions are available for this: you could truncate the nozzle,
or you could use Rao’s Method, which will be described in the next section.

5.3 Rao’s Method

Rao’s method for nozzle design is a method that is meant to closely imitate the geom-
etry of the MOC nozzle, while making it shorter, and thus lighter. For this reason, Rao’s
nozzles are considered the standard nozzle design. This is independent of the ratio of specific
heats of the gas (unlike the MOC nozzle). The diverging portion of the nozzle is generated
by a quadratic Bezier curve (a curve defined by control points) which makes it look like a
bell, so this nozzle is also referred to as a bell nozzle.

The length of Rao’s nozzles are measured as fractions of the length of a standard 15
degree diverging half-angle nozzle. The length of the diverging section of a 15 degree conical
nozzle is

Lconical =
(
√
ε− 1)Rt

tan(15)
(5.16)

Where ε is the expansion ratio and Rt is the throat radius of the nozzle. This formula
can be verified by using a bit of trig.

An 85% bell nozzle has a diverging section with a length of 0.85Lconical. Lower percent
bells will result in a shorter, lighter nozzle, and larger percent bells will result a higher
efficiency, but heavier nozzle. These two factors must be balanced. Usually 85% bell is
chosen.
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Figure 5.9: Geometry of Rao’s Nozzle from http://www.aspirespace.org.uk

Figure 5.9 shows the general geometry of Rao’s nozzle. The parameters θn and θe are
chosen based on the expansion ratio and percent bell of the nozzle. They are selected from
the chart shown below.
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Figure 5.10: Angle Chart for Rao’s Nozzle from http://www.aspirespace.org.uk

The design of the nozzle contour consists of three parts: two circular arcs, and the Bezier
curve. First, an arc with radius 1.5Rt is drawn from -135 degrees to -90 degrees, where the
angle is measured from the +x-axis. The end point of this arc is the throat of the nozzle
(the x-position of the throat of the nozzle is the zero point on the x-axis). Then a curve
with radius 0.382Rt is drawn from -90 degrees (connected to the throat) to θn − 90 degrees.
The endpoint of this second arc is point N. A a quadratic Bezier curve is then drawn from
point N to point E. Point E is the exit point of the nozzle. Point E has an x-coordinate of
(0.85Lconical) for an 85% bell nozzle, and a y-coordinate of

√
εRt.

The parametric equations for the quadratic Bezier curve are as follow

x(t) = (1− t2)Nx + 2t(1− t)Qx + t2Ey (5.17)

y(t) = (1− t2)Ny + 2t(1− t)Qy + t2Ey (5.18)

0 ≤ t ≤ 1 (5.19)

Where Nx and Ny are the x and y coordinates of N.
We already have the coordinates of points N and E. We just need to find the coordinates

of Q.
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Figure 5.11: Finding Point Q from http://www.aspirespace.org.uk

Point Q is the intersection point of a line extending from point N with angle θn with
respect to the horizontal and the line extending from point E with angle θe with respect to
the horizontal.

A Matlab script can be written based on this algorithm that takes the throat radius and
expansion ratio as inputs and outputs the coordinates of the nozzle profile.

5.4 Nozzle Thermal Considerations

One of the greatest challenges with nozzles especially with fuel like Ammonium Perchlo-
rate Composite or Ethalox, is thermal management. These fuels have very high combustion
temperatures (around 3000K), and the melting point of steel is around 1700K highest. As a
result, we need a cooling solution. Two options are regenerative cooling or ablative cooling.

Regenerative cooling involves running fuel through a jacket around the nozzle in order
to draw heat from the nozzle into the fuel. This is highly impractical due to its complexity
(machining regenerative channels is very difficult).

This leaves the option of ablative cooling. The idea of ablative cooling is that instead
of the heat being absorbed into the structure of the nozzle and melting it, the heat goes
into some material, which is then ejected from the nozzle leaving fresh ablative material
underneath it.

In practice, this would involve having a nozzle made out of graphite, or having a graphite
insert in a steel nozzle carrier. As the hot gases flow through the nozzle, the graphite is
slowly eroded away, taking the heat with it.
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